
Unsupervised Raw Waveform ModellingASR Lecture 18

Unsupervised Raw Waveform Modelling:
Self-supervised learning for Speech

Yumnah Mohamied

Automatic speech recognition – ASR lecture 18
23 March 2023

Unsupervised Raw Waveform ModellingASR Lecture 18

Divide and Conquer Strategy

• Conventional ASR consists of composite subsystems
trained and designed independently.

• Separates out feature extraction, acoustic modelling
and decoding steps.

2

Feature
extraction

Acoustic model
(DNN)

HMM
Raw

waveform MFCC
PLP

log-mel

Unsupervised Raw Waveform ModellingASR Lecture 18

Divide and Conquer Strategy

• Conventional ASR consists of composite subsystems
trained and designed independently.

• Separates out feature extraction, acoustic modelling
and decoding steps.

• Feature extraction is hand-crafted – based on prior
knowledge of speech production and/or perception.

3

Feature
extraction

Acoustic model
(DNN)

HMM
Raw

waveform MFCC
PLP

log-mel

Unsupervised Raw Waveform ModellingASR Lecture 18

• End-to-end systems directly map the extracted
features to an output sequence (words).

• But we can extend end-to-end concept in the other
direction: learnable feature extractor

End-to-end systems

4

Feature
extraction

End-to-end
trainable system

output
sequence

Raw
waveform MFCC

PLP
log-mel

Unsupervised Raw Waveform ModellingASR Lecture 18

Feature learning from the raw waveform

• Divide and conquer strategy was overwhelmingly
outperformed by feature learning in image processing.

• The deep learning revolution: ability to train with raw signal
with improved performance - no longer need to handcraft
features.

5

Feature learning (within acoustic
model/encoder) + downstream

ASR model

output
sequence

Raw
waveform

Unsupervised Raw Waveform ModellingASR Lecture 18

Feature learning from the raw waveform

• HMM/GMM: sensitive to input features
• Needs to be decorrelated to use a diagonal covariance matrix
• Dimension needs to be low

• Expert knowledge of speech production/perception led to range of feature
extraction pipelines: MFCC, log-mel, PLP, gammatone …

• Hybrid HMM/DNN don’t have these constraints.

• Features designed from perceptual evidence is not guaranteed to be best
features in a statistical modelling framework.

• Information loss from raw signal: models trained with a combination of
hand-crafted features outperform those trained with a single feature type.

6

Feature learning (within acoustic
model/encoder) + downstream

ASR model

output
sequence

Raw
waveform

Unsupervised Raw Waveform ModellingASR Lecture 18

Supervised feature learning

• Feature learning part of the acoustic model: input is raw waveform.

• Can use DNN
• But high-resolution and temporal aspect of raw waveform makes

CNNs a better choice (reduces learnable parameters).
• Then add a fully connected layer + softmax for classification and

output probabilities.

7

Unsupervised Raw Waveform ModellingASR Lecture 18

Supervised feature learning

• Feature learning part of the acoustic model: input is raw waveform.

• Can use DNN
• But high-resolution and temporal aspect of raw waveform makes

CNNs a better choice (reduces learnable parameters).
• Then add a fully connected layer + softmax for classification and

output probabilities.

• Can use LSTM directly with raw waveform for temporal modelling
• But higher-level modelling of the input features helps to

disentangle underlying factors of variation within the input.
• Requires unrolling LSTM for an infeasibly large number of steps
• Precede with CNN layers.

• Combine CNN layers, LSTM and DNN layers and train altogether:
CLDNN

• Performance comes close to hand-crafted features

8

Unsupervised Raw Waveform ModellingASR Lecture 18

Self-supervised learning (SSL)

• Feature learning step is separate to the acoustic model or end-to-end
system – therefore no labels

• Goal: learn a representation from the raw waveform that is then
frozen after training, and input into an ASR system as a replacement
to handcrafted features.

• Leverage large amounts of unlabelled data to learn a general
representation – features are not task specific.

9

SS Feature
learning

Downstream
ASR model

output
sequence

Raw
waveform

Unsupervised Raw Waveform ModellingASR Lecture 18

Self-supervised learning (SSL)

• Feature learning step is separate to the acoustic model or end-to-end
system – therefore no labels

• Goal: learn a representation from the raw waveform that is then
frozen after training, and input into an ASR system as a replacement
to handcrafted features.

• Leverage large amounts of unlabelled data to learn a general
representation – features are not task specific.

10

SS Feature
learning

Downstream
ASR model

output
sequence

Raw
waveform

Unsupervised Raw Waveform ModellingASR Lecture 18

Approaches we will discuss

11

Contrastive
methods
(CPC)

wav2vec 2.0

wav2vec

VQ-wav2vec

SSL learning algorithm:

Deep
clustering

HuBERT

Student-teacher
methods
(BYOL)

Data2vec

BPC

Pretext task:

Masked acoustic modelling

Auto-regressive

Unsupervised Raw Waveform ModellingASR Lecture 18

Contrastive methods

CPC
wav2vec

VQ-wav2vec
Wav2vec 2.0

Unsupervised Raw Waveform ModellingASR Lecture 18

Contrastive Predictive Coding

• Intuition: learn representations that encode the underlying shared information
between different parts of the high-dimensional speech signal

ØMaximise the Mutual Information

• CPC loss objective operates in latent space: it is challenging to predict (i.e.
generate) high-dimensional data.

• Unimodal losses (MSE) are not adept (introduces too much blurring)

• Powerful generative models that reconstruct every detail would be required:
computational intense and waste capacity at modelling complex relationships
in the data.

13

Unsupervised Raw Waveform ModellingASR Lecture 18

CPC in context of autoregressive modelling

• Autoregressive pretext task: learn to predict observations in the future, x, from
an encoded context window in the present, c.

• Future observations, x, are the “labels” created from the data

• Modelling p(x|c) (a generative model) to predict x, may not be optimal for
extracting shared information between x and c.

• We encode x and c, into compact representations which maximally preserve MI
of the original signals - we extract underlying latent variables that x and c have in
common

• Loss operates on these latent variables of x and c

14

Unsupervised Raw Waveform ModellingASR Lecture 18

CPC: Maximising Mutual Information

• MI given by:

• Model a density ratio, f, that preserves MI (use a simple log-bilinear model):

• Using a density ratio, and inferring z with an encoder, means the model does not
need to model the high-dimensional x.

15

Unsupervised Raw Waveform ModellingASR Lecture 18

CPC: InfoNCE (noise contrastive loss)

• We cannot evaluate p(x) or p(x|c) directly, but we can sample from
these distributions

• One positive sample from p(x|c), and N negative samples from the
proposal distribution p(x) (random frame encodings within and across
utterances)

• Categorical cross-entropy loss of classifying the positive sample
correctly

16

Unsupervised Raw Waveform ModellingASR Lecture 18

Aggregator
strided causal CNN (9 layers)

17

Encoder
strided CNN (5 layers)

wav2vec

Unsupervised Raw Waveform ModellingASR Lecture 18

wav2vec

18

zt+k’ = Wk ct

k

• Predict K steps into future using convTranspose
• Sample N negative z
• Model trained to distinguish predicted z from negative distractor samples

Unsupervised Raw Waveform ModellingASR Lecture 18

VQ-wav2vec

• Discretize the latent encoding of the raw audio, z, and pass this into
aggregator to generate context c.

• Model still trained with categorical cross-entropy loss – want to
predict future encoding z, from context vector c, and use negative
samples to form the contrastive loss.

• Loss function has additional terms for the quantization module.

19

Unsupervised Raw Waveform ModellingASR Lecture 18

VQ-wav2vec: loss function

20

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The
output of the encoder z(x) is mapped to the nearest point e2. The gradient rzL (in red) will push the
encoder to change its output, which could alter the configuration in the next forward pass.

During forward computation the nearest embedding zq(x) (equation 2) is passed to the decoder, and
during the backwards pass the gradient rzL is passed unaltered to the encoder. Since the output
representation of the encoder and the input to the decoder share the same D dimensional space,
the gradients contain useful information for how the encoder has to change its output to lower the
reconstruction loss.

As seen on Figure 1 (right), the gradient can push the encoder’s output to be discretised differently in
the next forward pass, because the assignment in equation 1 will be different.

Equation 3 specifies the overall loss function. It is has three components that are used to train
different parts of VQ-VAE. The first term is the reconstruction loss (or the data term) which optimizes
the decoder and the encoder (through the estimator explained above). Due to the straight-through
gradient estimation of mapping from ze(x) to zq(x), the embeddings ei receive no gradients from
the reconstruction loss log p(z|zq(x)). Therefore, in order to learn the embedding space, we use one
of the simplest dictionary learning algorithms, Vector Quantisation (VQ). The VQ objective uses
the l2 error to move the embedding vectors ei towards the encoder outputs ze(x) as shown in the
second term of equation 3. Because this loss term is only used for updating the dictionary, one can
alternatively also update the dictionary items as function of moving averages of ze(x) (not used for
the experiments in this work). For more details see Appendix A.1.

Finally, since the volume of the embedding space is dimensionless, it can grow arbitrarily if the
embeddings ei do not train as fast as the encoder parameters. To make sure the encoder commits to
an embedding and its output does not grow, we add a commitment loss, the third term in equation 3.
Thus, the total training objective becomes:

L = log p(x|zq(x)) + ksg[ze(x)]� ek22 + �kze(x)� sg[e]k22, (3)

where sg stands for the stopgradient operator that is defined as identity at forward computation time
and has zero partial derivatives, thus effectively constraining its operand to be a non-updated constant.
The decoder optimises the first loss term only, the encoder optimises the first and the last loss terms,
and the embeddings are optimised by the middle loss term. We found the resulting algorithm to be
quite robust to �, as the results did not vary for values of � ranging from 0.1 to 2.0. We use � = 0.25
in all our experiments, although in general this would depend on the scale of reconstruction loss.
Since we assume a uniform prior for z, the KL term that usually appears in the ELBO is constant
w.r.t. the encoder parameters and can thus be ignored for training.

In our experiments we define N discrete latents (e.g., we use a field of 32 x 32 latents for ImageNet,
or 8 x 8 x 10 for CIFAR10). The resulting loss L is identical, except that we get an average over N
terms for k-means and commitment loss – one for each latent.

The log-likelihood of the complete model log p(x) can be evaluated as follows:

log p(x) = log
X

k

p(x|zk)p(zk),

Because the decoder p(x|z) is trained with z = zq(x) from MAP-inference, the decoder should not
allocate any probability mass to p(x|z) for z 6= zq(x) once it has fully converged. Thus, we can write

4

z

Codebook, size V

�̂�

Compute Euclidean
distance, find closest

codebook entry

𝑖 = argmin! 𝒛 − 𝒆! "
"

,𝒛 = 𝒆#

∇"̂𝐿

∇"̂𝐿
𝑧

𝑒#

Contrastive loss

Trains encoder and
aggregator parameters

Commitment loss

Ensures encoder commits
to a codebook entry

without limitless growth

Vector Quantization loss

Trains embedding space: L2
pushes codebook vectors
towards encoder outputs

dz → V

10
ms

Z

1.2 3.5 … 0.6

0.2 0.5 … 0.1

0 1 … 0

e1 e2 … eV

logits

probabilities Gumbel

argmax

e2

Ẑ
⨂

one-hot

(a) Gumbel-Softmax

||z - ei||

10
ms

Z

0.5 0.1 … 0.8

0 1 … 0

e1 e2 … eV

distances

argmin

e2

Ẑ
⨂

one-hot

(b) K-means clustering.

Figure 2: (a) The Gumbel-Softmax quantization computes logits representing the codebook vectors
(e). In the forward pass the argmax codeword (e2) is chosen and for backward (not shown) the
exact probabilities are used. (b) K-means vector quantization computes the distance to all codeword
vector and chooses the closest (argmin).

as well as online k-means clustering, similar to the vector quantized variational autoencoder (VQ-
VAE; Oord et al., 2017; §3.2; Figure 2b). Finally, we perform multiple vector quantizations over
different parts of z to mitigate mode collapse (§3.3).

3.1 GUMBEL-SOFTMAX

The Gumbel-Softmax (Gumbel, 1954; Jang et al., 2016; Maddison et al., 2014) enables selecting
discrete codebook variables in a fully differentiable way and we use the straight-through estimator
of Jang et al. (2016). Given the dense representation z, we apply a linear layer, followed by a ReLU
and another linear which outputs l 2 RV logits for the Gumbel-Softmax. At inference, we simply
pick the largest index in l. At training, the output probabilities for choosing the j-th variable are

pj =
exp(lj + vj)/⌧PV

k=1 exp(lk + vk)/⌧
, (2)

where v = � log(� log(u)) and u are uniform samples from U(0, 1). During the forward pass,
i = argmaxjpj and in the backward pass, the true gradient of the Gumbel-Softmax outputs is used.

3.2 K-MEANS

The vector quantization approach of van den Oord et al. (2017) is an alternative to making the index
selection procedure fully differentiable. Different to their setup, we optimize a future time step
prediction loss instead of the reconstruction loss of an autoencoder.

We choose the codebook variable representation by finding the closest variable to the input features
z in terms of the Euclidean distance, yielding i = argminjkz � ejk22. During the forward pass, we
select ẑ = ei by choosing the corresponding variable from the codebook. We obtain gradients for
the encoder network by back-propagating dLwav2vec/dẑ (van den Oord et al., 2017). The final loss
has two additional terms:

L =
KX

k=1

Lwav2vec
k +

⇣
ksg(z)� ẑk2 + �kz� sg(ẑ)k2

⌘
, (3)

where sg(x) ⌘ x, d
dx sg(x) ⌘ 0 is the stop gradient operator and � is a hyperparameter. The first

term is the future prediction task and gradients do not change the codebook because of the straight-
through gradient estimation of mapping z to ẑ. The second term ksg(z)� ẑk2 moves the codebook
vectors closer to the encoder output, and the third term kz � sg(ẑ)k2 makes sure that the encoder
outputs are close to a centroid (codeword).

3

dz → V

10
ms

Z

1.2 3.5 … 0.6

0.2 0.5 … 0.1

0 1 … 0

e1 e2 … eV

logits

probabilities Gumbel

argmax

e2

Ẑ
⨂

one-hot

(a) Gumbel-Softmax

||z - ei||

10
ms

Z

0.5 0.1 … 0.8

0 1 … 0

e1 e2 … eV

distances

argmin

e2

Ẑ
⨂

one-hot

(b) K-means clustering.

Figure 2: (a) The Gumbel-Softmax quantization computes logits representing the codebook vectors
(e). In the forward pass the argmax codeword (e2) is chosen and for backward (not shown) the
exact probabilities are used. (b) K-means vector quantization computes the distance to all codeword
vector and chooses the closest (argmin).

as well as online k-means clustering, similar to the vector quantized variational autoencoder (VQ-
VAE; Oord et al., 2017; §3.2; Figure 2b). Finally, we perform multiple vector quantizations over
different parts of z to mitigate mode collapse (§3.3).

3.1 GUMBEL-SOFTMAX

The Gumbel-Softmax (Gumbel, 1954; Jang et al., 2016; Maddison et al., 2014) enables selecting
discrete codebook variables in a fully differentiable way and we use the straight-through estimator
of Jang et al. (2016). Given the dense representation z, we apply a linear layer, followed by a ReLU
and another linear which outputs l 2 RV logits for the Gumbel-Softmax. At inference, we simply
pick the largest index in l. At training, the output probabilities for choosing the j-th variable are

pj =
exp(lj + vj)/⌧PV

k=1 exp(lk + vk)/⌧
, (2)

where v = � log(� log(u)) and u are uniform samples from U(0, 1). During the forward pass,
i = argmaxjpj and in the backward pass, the true gradient of the Gumbel-Softmax outputs is used.

3.2 K-MEANS

The vector quantization approach of van den Oord et al. (2017) is an alternative to making the index
selection procedure fully differentiable. Different to their setup, we optimize a future time step
prediction loss instead of the reconstruction loss of an autoencoder.

We choose the codebook variable representation by finding the closest variable to the input features
z in terms of the Euclidean distance, yielding i = argminjkz � ejk22. During the forward pass, we
select ẑ = ei by choosing the corresponding variable from the codebook. We obtain gradients for
the encoder network by back-propagating dLwav2vec/dẑ (van den Oord et al., 2017). The final loss
has two additional terms:

L =
KX

k=1

Lwav2vec
k +

⇣
ksg(z)� ẑk2 + �kz� sg(ẑ)k2

⌘
, (3)

where sg(x) ⌘ x, d
dx sg(x) ⌘ 0 is the stop gradient operator and � is a hyperparameter. The first

term is the future prediction task and gradients do not change the codebook because of the straight-
through gradient estimation of mapping z to ẑ. The second term ksg(z)� ẑk2 moves the codebook
vectors closer to the encoder output, and the third term kz � sg(ẑ)k2 makes sure that the encoder
outputs are close to a centroid (codeword).

3

dz → V

10
ms

Z

1.2 3.5 … 0.6

0.2 0.5 … 0.1

0 1 … 0

e1 e2 … eV

logits

probabilities Gumbel

argmax

e2

Ẑ
⨂

one-hot

(a) Gumbel-Softmax

||z - ei||

10
ms

Z

0.5 0.1 … 0.8

0 1 … 0

e1 e2 … eV

distances

argmin

e2

Ẑ
⨂

one-hot

(b) K-means clustering.

Figure 2: (a) The Gumbel-Softmax quantization computes logits representing the codebook vectors
(e). In the forward pass the argmax codeword (e2) is chosen and for backward (not shown) the
exact probabilities are used. (b) K-means vector quantization computes the distance to all codeword
vector and chooses the closest (argmin).

as well as online k-means clustering, similar to the vector quantized variational autoencoder (VQ-
VAE; Oord et al., 2017; §3.2; Figure 2b). Finally, we perform multiple vector quantizations over
different parts of z to mitigate mode collapse (§3.3).

3.1 GUMBEL-SOFTMAX

The Gumbel-Softmax (Gumbel, 1954; Jang et al., 2016; Maddison et al., 2014) enables selecting
discrete codebook variables in a fully differentiable way and we use the straight-through estimator
of Jang et al. (2016). Given the dense representation z, we apply a linear layer, followed by a ReLU
and another linear which outputs l 2 RV logits for the Gumbel-Softmax. At inference, we simply
pick the largest index in l. At training, the output probabilities for choosing the j-th variable are

pj =
exp(lj + vj)/⌧PV

k=1 exp(lk + vk)/⌧
, (2)

where v = � log(� log(u)) and u are uniform samples from U(0, 1). During the forward pass,
i = argmaxjpj and in the backward pass, the true gradient of the Gumbel-Softmax outputs is used.

3.2 K-MEANS

The vector quantization approach of van den Oord et al. (2017) is an alternative to making the index
selection procedure fully differentiable. Different to their setup, we optimize a future time step
prediction loss instead of the reconstruction loss of an autoencoder.

We choose the codebook variable representation by finding the closest variable to the input features
z in terms of the Euclidean distance, yielding i = argminjkz � ejk22. During the forward pass, we
select ẑ = ei by choosing the corresponding variable from the codebook. We obtain gradients for
the encoder network by back-propagating dLwav2vec/dẑ (van den Oord et al., 2017). The final loss
has two additional terms:

L =
KX

k=1

Lwav2vec
k +

⇣
ksg(z)� ẑk2 + �kz� sg(ẑ)k2

⌘
, (3)

where sg(x) ⌘ x, d
dx sg(x) ⌘ 0 is the stop gradient operator and � is a hyperparameter. The first

term is the future prediction task and gradients do not change the codebook because of the straight-
through gradient estimation of mapping z to ẑ. The second term ksg(z)� ẑk2 moves the codebook
vectors closer to the encoder output, and the third term kz � sg(ẑ)k2 makes sure that the encoder
outputs are close to a centroid (codeword).

3

dz → V

10
ms

Z

1.2 3.5 … 0.6

0.2 0.5 … 0.1

0 1 … 0

e1 e2 … eV

logits

probabilities Gumbel

argmax

e2

Ẑ
⨂

one-hot

(a) Gumbel-Softmax

||z - ei||

10
ms

Z

0.5 0.1 … 0.8

0 1 … 0

e1 e2 … eV

distances

argmin

e2

Ẑ
⨂

one-hot

(b) K-means clustering.

Figure 2: (a) The Gumbel-Softmax quantization computes logits representing the codebook vectors
(e). In the forward pass the argmax codeword (e2) is chosen and for backward (not shown) the
exact probabilities are used. (b) K-means vector quantization computes the distance to all codeword
vector and chooses the closest (argmin).

as well as online k-means clustering, similar to the vector quantized variational autoencoder (VQ-
VAE; Oord et al., 2017; §3.2; Figure 2b). Finally, we perform multiple vector quantizations over
different parts of z to mitigate mode collapse (§3.3).

3.1 GUMBEL-SOFTMAX

The Gumbel-Softmax (Gumbel, 1954; Jang et al., 2016; Maddison et al., 2014) enables selecting
discrete codebook variables in a fully differentiable way and we use the straight-through estimator
of Jang et al. (2016). Given the dense representation z, we apply a linear layer, followed by a ReLU
and another linear which outputs l 2 RV logits for the Gumbel-Softmax. At inference, we simply
pick the largest index in l. At training, the output probabilities for choosing the j-th variable are

pj =
exp(lj + vj)/⌧PV

k=1 exp(lk + vk)/⌧
, (2)

where v = � log(� log(u)) and u are uniform samples from U(0, 1). During the forward pass,
i = argmaxjpj and in the backward pass, the true gradient of the Gumbel-Softmax outputs is used.

3.2 K-MEANS

The vector quantization approach of van den Oord et al. (2017) is an alternative to making the index
selection procedure fully differentiable. Different to their setup, we optimize a future time step
prediction loss instead of the reconstruction loss of an autoencoder.

We choose the codebook variable representation by finding the closest variable to the input features
z in terms of the Euclidean distance, yielding i = argminjkz � ejk22. During the forward pass, we
select ẑ = ei by choosing the corresponding variable from the codebook. We obtain gradients for
the encoder network by back-propagating dLwav2vec/dẑ (van den Oord et al., 2017). The final loss
has two additional terms:

L =
KX

k=1

Lwav2vec
k +

⇣
ksg(z)� ẑk2 + �kz� sg(ẑ)k2

⌘
, (3)

where sg(x) ⌘ x, d
dx sg(x) ⌘ 0 is the stop gradient operator and � is a hyperparameter. The first

term is the future prediction task and gradients do not change the codebook because of the straight-
through gradient estimation of mapping z to ẑ. The second term ksg(z)� ẑk2 moves the codebook
vectors closer to the encoder output, and the third term kz � sg(ẑ)k2 makes sure that the encoder
outputs are close to a centroid (codeword).

3

dz → V

10
ms

Z

1.2 3.5 … 0.6

0.2 0.5 … 0.1

0 1 … 0

e1 e2 … eV

logits

probabilities Gumbel

argmax

e2

Ẑ
⨂

one-hot

(a) Gumbel-Softmax

||z - ei||

10
ms

Z

0.5 0.1 … 0.8

0 1 … 0

e1 e2 … eV

distances

argmin

e2

Ẑ
⨂

one-hot

(b) K-means clustering.

Figure 2: (a) The Gumbel-Softmax quantization computes logits representing the codebook vectors
(e). In the forward pass the argmax codeword (e2) is chosen and for backward (not shown) the
exact probabilities are used. (b) K-means vector quantization computes the distance to all codeword
vector and chooses the closest (argmin).

as well as online k-means clustering, similar to the vector quantized variational autoencoder (VQ-
VAE; Oord et al., 2017; §3.2; Figure 2b). Finally, we perform multiple vector quantizations over
different parts of z to mitigate mode collapse (§3.3).

3.1 GUMBEL-SOFTMAX

The Gumbel-Softmax (Gumbel, 1954; Jang et al., 2016; Maddison et al., 2014) enables selecting
discrete codebook variables in a fully differentiable way and we use the straight-through estimator
of Jang et al. (2016). Given the dense representation z, we apply a linear layer, followed by a ReLU
and another linear which outputs l 2 RV logits for the Gumbel-Softmax. At inference, we simply
pick the largest index in l. At training, the output probabilities for choosing the j-th variable are

pj =
exp(lj + vj)/⌧PV

k=1 exp(lk + vk)/⌧
, (2)

where v = � log(� log(u)) and u are uniform samples from U(0, 1). During the forward pass,
i = argmaxjpj and in the backward pass, the true gradient of the Gumbel-Softmax outputs is used.

3.2 K-MEANS

The vector quantization approach of van den Oord et al. (2017) is an alternative to making the index
selection procedure fully differentiable. Different to their setup, we optimize a future time step
prediction loss instead of the reconstruction loss of an autoencoder.

We choose the codebook variable representation by finding the closest variable to the input features
z in terms of the Euclidean distance, yielding i = argminjkz � ejk22. During the forward pass, we
select ẑ = ei by choosing the corresponding variable from the codebook. We obtain gradients for
the encoder network by back-propagating dLwav2vec/dẑ (van den Oord et al., 2017). The final loss
has two additional terms:

L =
KX

k=1

Lwav2vec
k +

⇣
ksg(z)� ẑk2 + �kz� sg(ẑ)k2

⌘
, (3)

where sg(x) ⌘ x, d
dx sg(x) ⌘ 0 is the stop gradient operator and � is a hyperparameter. The first

term is the future prediction task and gradients do not change the codebook because of the straight-
through gradient estimation of mapping z to ẑ. The second term ksg(z)� ẑk2 moves the codebook
vectors closer to the encoder output, and the third term kz � sg(ẑ)k2 makes sure that the encoder
outputs are close to a centroid (codeword).

3

dz → V

10
ms

Z

1.2 3.5 … 0.6

0.2 0.5 … 0.1

0 1 … 0

e1 e2 … eV

logits

probabilities Gumbel

argmax

e2

Ẑ
⨂

one-hot

(a) Gumbel-Softmax

||z - ei||

10
ms

Z

0.5 0.1 … 0.8

0 1 … 0

e1 e2 … eV

distances

argmin

e2

Ẑ
⨂

one-hot

(b) K-means clustering.

Figure 2: (a) The Gumbel-Softmax quantization computes logits representing the codebook vectors
(e). In the forward pass the argmax codeword (e2) is chosen and for backward (not shown) the
exact probabilities are used. (b) K-means vector quantization computes the distance to all codeword
vector and chooses the closest (argmin).

as well as online k-means clustering, similar to the vector quantized variational autoencoder (VQ-
VAE; Oord et al., 2017; §3.2; Figure 2b). Finally, we perform multiple vector quantizations over
different parts of z to mitigate mode collapse (§3.3).

3.1 GUMBEL-SOFTMAX

The Gumbel-Softmax (Gumbel, 1954; Jang et al., 2016; Maddison et al., 2014) enables selecting
discrete codebook variables in a fully differentiable way and we use the straight-through estimator
of Jang et al. (2016). Given the dense representation z, we apply a linear layer, followed by a ReLU
and another linear which outputs l 2 RV logits for the Gumbel-Softmax. At inference, we simply
pick the largest index in l. At training, the output probabilities for choosing the j-th variable are

pj =
exp(lj + vj)/⌧PV

k=1 exp(lk + vk)/⌧
, (2)

where v = � log(� log(u)) and u are uniform samples from U(0, 1). During the forward pass,
i = argmaxjpj and in the backward pass, the true gradient of the Gumbel-Softmax outputs is used.

3.2 K-MEANS

The vector quantization approach of van den Oord et al. (2017) is an alternative to making the index
selection procedure fully differentiable. Different to their setup, we optimize a future time step
prediction loss instead of the reconstruction loss of an autoencoder.

We choose the codebook variable representation by finding the closest variable to the input features
z in terms of the Euclidean distance, yielding i = argminjkz � ejk22. During the forward pass, we
select ẑ = ei by choosing the corresponding variable from the codebook. We obtain gradients for
the encoder network by back-propagating dLwav2vec/dẑ (van den Oord et al., 2017). The final loss
has two additional terms:

L =
KX

k=1

Lwav2vec
k +

⇣
ksg(z)� ẑk2 + �kz� sg(ẑ)k2

⌘
, (3)

where sg(x) ⌘ x, d
dx sg(x) ⌘ 0 is the stop gradient operator and � is a hyperparameter. The first

term is the future prediction task and gradients do not change the codebook because of the straight-
through gradient estimation of mapping z to ẑ. The second term ksg(z)� ẑk2 moves the codebook
vectors closer to the encoder output, and the third term kz � sg(ẑ)k2 makes sure that the encoder
outputs are close to a centroid (codeword).

3

Unsupervised Raw Waveform ModellingASR Lecture 18

wav2vec 2.0 – masked acoustic modelling

21

Unsupervised Raw Waveform ModellingASR Lecture 18

Deep clustering and masked prediction

HuBERT: Hidden Unit BERT

Unsupervised Raw Waveform ModellingASR Lecture 18

HuBERT

23

Unsupervised Raw Waveform ModellingASR Lecture 18

HuBERT: Clustering happens offline (MFCC)

24

https://blog.devgenius.io/hubert-explained-6ec7c2bf71fc

Unsupervised Raw Waveform ModellingASR Lecture 18

HuBERT: Clustering happens offline (latents)

25

https://blog.devgenius.io/hubert-explained-6ec7c2bf71fc

Unsupervised Raw Waveform ModellingASR Lecture 18

Student – Teacher

BYOL
Data2vec

BPC

Unsupervised Raw Waveform ModellingASR Lecture 18

Bootstrap Your Own Latent (BYOL)

27

Iteratively train target network, parametrized as a moving average of online:

ξ ← 𝜏ξ + 1 − 𝜏 𝜃

Create the
view (data

augmentation)

Model
𝑓!

Predictor
𝑞!

𝑥
𝑧!

Create the
view (data

augmentation)
𝑥′

𝑧"
#

Regression loss

Online

Target

Model
𝑓"

Unsupervised Raw Waveform ModellingASR Lecture 18

Bootstrap Predictive Coding (BPC)

28

Aggregator
strided causal CNN (9 layers)

Encoder
strided CNN (5 layers)

Create the view
(data

augmentation)

Model
𝑓!

Predictor
𝑞!

𝑥

𝑧!

Create the view
(data

augmentation)
𝑥′

𝑧"
#

Regression loss

Online

Target

Model
𝑓"

BPCData2vec

Unsupervised Raw Waveform ModellingASR Lecture 18

Summary

• Supervised feature learning embedded within the ASR system is competitive with state-of-the-
art systems that use handcrafted features.

• Self-supervised learning to extract a latent representation for features is a powerful approach
minimizing information loss from the raw signal and leveraging large amounts of unlabelled data.

• Covered contrastive and non-contrastive SSL methods, and two pretext tasks: masked acoustic
modelling and autoregressive modelling. All methods apply loss to the latent representations.

• Background reading:
• A van den Oord et al (2018) “Representation learning with Contrastive Predictive

Coding”. Arxiv.
• A Baevski et al (2020). “wav2vec 2.0: A framework for self-supervised learning of speech

representations. NeurIPS.
• W Hsu et al (2021). “HuBERT: Self-supervised speech representation learning by masked

prediction of hidden units”. IEEE/ACM Transactions on Audio, Speech and Language processing.
• JB Grill et al (2020). “Bootstrap your own latent: A new approach to self-supervised

learning”. NeurIPS.
• A Baevski et al (2022). “Data2vec: A general framework for self-supervised learning in

speech, vision and language”. ICML.

29

