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Divide and Conquer Strategy

• Conventional ASR consists of composite subsystems 
trained and designed independently. 

• Separates out feature extraction, acoustic modelling 
and decoding steps. 
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Divide and Conquer Strategy

• Conventional ASR consists of composite subsystems 
trained and designed independently. 

• Separates out feature extraction, acoustic modelling 
and decoding steps. 

• Feature extraction is hand-crafted – based on prior 
knowledge of speech production and/or perception.
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• End-to-end systems directly map the extracted 
features to an output sequence (words). 

• But we can extend end-to-end concept in the other 
direction: learnable feature extractor

End-to-end systems
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Feature learning from the raw waveform

• Divide and conquer strategy was overwhelmingly 
outperformed by feature learning in image processing.

• The deep learning revolution: ability to train with raw signal 
with improved performance - no longer need to handcraft 
features. 
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Feature learning from the raw waveform

• HMM/GMM: sensitive to input features
• Needs to be decorrelated to use a diagonal covariance matrix
• Dimension needs to be low

• Expert knowledge of speech production/perception led to range of feature 
extraction pipelines: MFCC, log-mel, PLP, gammatone … 

• Hybrid HMM/DNN don’t have these constraints.

• Features designed from perceptual evidence is not guaranteed to be best 
features in a statistical modelling framework.

• Information loss from raw signal: models trained with a combination of 
hand-crafted features outperform those trained with a single feature type.
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Supervised feature learning

• Feature learning part of the acoustic model: input is raw waveform.

• Can use DNN
• But high-resolution and temporal aspect of raw waveform makes 

CNNs a better choice (reduces learnable parameters). 
• Then add a fully connected layer + softmax for classification and 

output probabilities.
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Supervised feature learning

• Feature learning part of the acoustic model: input is raw waveform.

• Can use DNN
• But high-resolution and temporal aspect of raw waveform makes 

CNNs a better choice (reduces learnable parameters). 
• Then add a fully connected layer + softmax for classification and 

output probabilities.

• Can use LSTM directly with raw waveform for temporal modelling
• But higher-level modelling of the input features helps to 

disentangle underlying factors of variation within the input.
• Requires unrolling LSTM for an infeasibly large number of steps 
• Precede with CNN layers. 

• Combine CNN layers, LSTM and DNN layers and train altogether: 
CLDNN 

• Performance comes close to hand-crafted features
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Self-supervised learning (SSL)

• Feature learning step is separate to the acoustic model or end-to-end 
system – therefore no labels

• Goal: learn a representation from the raw waveform that is then 
frozen after training, and input into an ASR system as a replacement 
to handcrafted features.

• Leverage large amounts of unlabelled data to learn a general 
representation – features are not task specific. 
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Self-supervised learning (SSL)

• Feature learning step is separate to the acoustic model or end-to-end 
system – therefore no labels

• Goal: learn a representation from the raw waveform that is then 
frozen after training, and input into an ASR system as a replacement 
to handcrafted features.

• Leverage large amounts of unlabelled data to learn a general 
representation – features are not task specific. 
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Approaches we will discuss

11

Contrastive 
methods
(CPC)

wav2vec 2.0

wav2vec

VQ-wav2vec

SSL learning algorithm:

Deep 
clustering

HuBERT

Student-teacher 
methods
(BYOL)

Data2vec

BPC

Pretext task:

Masked acoustic modelling

Auto-regressive



Unsupervised Raw Waveform ModellingASR Lecture 18

Contrastive methods

CPC
wav2vec

VQ-wav2vec
Wav2vec 2.0
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Contrastive Predictive Coding

• Intuition: learn representations that encode the underlying shared information 
between different parts of the high-dimensional speech signal 

ØMaximise the Mutual Information

• CPC loss objective operates in latent space: it is challenging to predict (i.e. 
generate) high-dimensional data. 

• Unimodal losses (MSE) are not adept (introduces too much blurring)

• Powerful generative models that reconstruct every detail would be required: 
computational intense and waste capacity at modelling complex relationships 
in the data. 
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CPC in context of autoregressive modelling

• Autoregressive pretext task: learn to predict observations in the future, x, from 
an encoded context window in the present, c. 

• Future observations, x, are the “labels” created from the data 

• Modelling p(x|c) (a generative model) to predict x, may not be optimal for 
extracting shared information between x and c.    

• We encode x and c, into compact representations which maximally preserve MI 
of the original signals - we extract underlying latent variables that x and c have in 
common 

• Loss operates on these latent variables of x and c

14
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CPC: Maximising Mutual Information

• MI given by: 

• Model a density ratio, f, that preserves MI (use a simple log-bilinear model):

• Using a density ratio, and inferring z with an encoder, means the model does not 
need to model the high-dimensional x. 
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CPC: InfoNCE (noise contrastive loss)

• We cannot evaluate p(x) or p(x|c) directly, but we can sample from 
these distributions

• One positive sample from p(x|c), and N negative samples from the 
proposal distribution p(x) (random frame encodings within and across 
utterances)

• Categorical cross-entropy loss of classifying the positive sample 
correctly
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Aggregator
strided causal CNN (9 layers)
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wav2vec

18

zt+k’ = Wk ct

k

• Predict K steps into future using convTranspose
• Sample N negative z
• Model trained to distinguish predicted z from negative distractor samples
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VQ-wav2vec

• Discretize the latent encoding of the raw audio, z, and pass this into 
aggregator to generate context c. 

• Model still trained with categorical cross-entropy loss – want to 
predict future encoding z, from context vector c, and use negative 
samples to form the contrastive loss. 

• Loss function has additional terms for the quantization module.
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VQ-wav2vec: loss function

20

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The
output of the encoder z(x) is mapped to the nearest point e2. The gradient rzL (in red) will push the
encoder to change its output, which could alter the configuration in the next forward pass.

During forward computation the nearest embedding zq(x) (equation 2) is passed to the decoder, and
during the backwards pass the gradient rzL is passed unaltered to the encoder. Since the output
representation of the encoder and the input to the decoder share the same D dimensional space,
the gradients contain useful information for how the encoder has to change its output to lower the
reconstruction loss.

As seen on Figure 1 (right), the gradient can push the encoder’s output to be discretised differently in
the next forward pass, because the assignment in equation 1 will be different.

Equation 3 specifies the overall loss function. It is has three components that are used to train
different parts of VQ-VAE. The first term is the reconstruction loss (or the data term) which optimizes
the decoder and the encoder (through the estimator explained above). Due to the straight-through
gradient estimation of mapping from ze(x) to zq(x), the embeddings ei receive no gradients from
the reconstruction loss log p(z|zq(x)). Therefore, in order to learn the embedding space, we use one
of the simplest dictionary learning algorithms, Vector Quantisation (VQ). The VQ objective uses
the l2 error to move the embedding vectors ei towards the encoder outputs ze(x) as shown in the
second term of equation 3. Because this loss term is only used for updating the dictionary, one can
alternatively also update the dictionary items as function of moving averages of ze(x) (not used for
the experiments in this work). For more details see Appendix A.1.

Finally, since the volume of the embedding space is dimensionless, it can grow arbitrarily if the
embeddings ei do not train as fast as the encoder parameters. To make sure the encoder commits to
an embedding and its output does not grow, we add a commitment loss, the third term in equation 3.
Thus, the total training objective becomes:

L = log p(x|zq(x)) + ksg[ze(x)]� ek22 + �kze(x)� sg[e]k22, (3)

where sg stands for the stopgradient operator that is defined as identity at forward computation time
and has zero partial derivatives, thus effectively constraining its operand to be a non-updated constant.
The decoder optimises the first loss term only, the encoder optimises the first and the last loss terms,
and the embeddings are optimised by the middle loss term. We found the resulting algorithm to be
quite robust to �, as the results did not vary for values of � ranging from 0.1 to 2.0. We use � = 0.25
in all our experiments, although in general this would depend on the scale of reconstruction loss.
Since we assume a uniform prior for z, the KL term that usually appears in the ELBO is constant
w.r.t. the encoder parameters and can thus be ignored for training.

In our experiments we define N discrete latents (e.g., we use a field of 32 x 32 latents for ImageNet,
or 8 x 8 x 10 for CIFAR10). The resulting loss L is identical, except that we get an average over N
terms for k-means and commitment loss – one for each latent.

The log-likelihood of the complete model log p(x) can be evaluated as follows:

log p(x) = log
X

k

p(x|zk)p(zk),

Because the decoder p(x|z) is trained with z = zq(x) from MAP-inference, the decoder should not
allocate any probability mass to p(x|z) for z 6= zq(x) once it has fully converged. Thus, we can write
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Figure 2: (a) The Gumbel-Softmax quantization computes logits representing the codebook vectors
(e). In the forward pass the argmax codeword (e2) is chosen and for backward (not shown) the
exact probabilities are used. (b) K-means vector quantization computes the distance to all codeword
vector and chooses the closest (argmin).

as well as online k-means clustering, similar to the vector quantized variational autoencoder (VQ-
VAE; Oord et al., 2017; §3.2; Figure 2b). Finally, we perform multiple vector quantizations over
different parts of z to mitigate mode collapse (§3.3).

3.1 GUMBEL-SOFTMAX

The Gumbel-Softmax (Gumbel, 1954; Jang et al., 2016; Maddison et al., 2014) enables selecting
discrete codebook variables in a fully differentiable way and we use the straight-through estimator
of Jang et al. (2016). Given the dense representation z, we apply a linear layer, followed by a ReLU
and another linear which outputs l 2 RV logits for the Gumbel-Softmax. At inference, we simply
pick the largest index in l. At training, the output probabilities for choosing the j-th variable are

pj =
exp(lj + vj)/⌧PV

k=1 exp(lk + vk)/⌧
, (2)

where v = � log(� log(u)) and u are uniform samples from U(0, 1). During the forward pass,
i = argmaxjpj and in the backward pass, the true gradient of the Gumbel-Softmax outputs is used.

3.2 K-MEANS

The vector quantization approach of van den Oord et al. (2017) is an alternative to making the index
selection procedure fully differentiable. Different to their setup, we optimize a future time step
prediction loss instead of the reconstruction loss of an autoencoder.

We choose the codebook variable representation by finding the closest variable to the input features
z in terms of the Euclidean distance, yielding i = argminjkz � ejk22. During the forward pass, we
select ẑ = ei by choosing the corresponding variable from the codebook. We obtain gradients for
the encoder network by back-propagating dLwav2vec/dẑ (van den Oord et al., 2017). The final loss
has two additional terms:

L =
KX

k=1

Lwav2vec
k +

⇣
ksg(z)� ẑk2 + �kz� sg(ẑ)k2

⌘
, (3)

where sg(x) ⌘ x, d
dx sg(x) ⌘ 0 is the stop gradient operator and � is a hyperparameter. The first

term is the future prediction task and gradients do not change the codebook because of the straight-
through gradient estimation of mapping z to ẑ. The second term ksg(z)� ẑk2 moves the codebook
vectors closer to the encoder output, and the third term kz � sg(ẑ)k2 makes sure that the encoder
outputs are close to a centroid (codeword).
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outputs are close to a centroid (codeword).

3

dz → V 

10
ms

Z

1.2 3.5 … 0.6

0.2 0.5 … 0.1

0 1 … 0

e1 e2 … eV

logits

probabilities Gumbel

argmax

e2

Ẑ
⨂

one-hot

(a) Gumbel-Softmax

||z - ei||

10
ms

Z

0.5 0.1 … 0.8

0 1 … 0

e1 e2 … eV

distances

argmin

e2

Ẑ
⨂

one-hot

(b) K-means clustering.

Figure 2: (a) The Gumbel-Softmax quantization computes logits representing the codebook vectors
(e). In the forward pass the argmax codeword (e2) is chosen and for backward (not shown) the
exact probabilities are used. (b) K-means vector quantization computes the distance to all codeword
vector and chooses the closest (argmin).

as well as online k-means clustering, similar to the vector quantized variational autoencoder (VQ-
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ksg(z)� ẑk2 + �kz� sg(ẑ)k2
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exact probabilities are used. (b) K-means vector quantization computes the distance to all codeword
vector and chooses the closest (argmin).

as well as online k-means clustering, similar to the vector quantized variational autoencoder (VQ-
VAE; Oord et al., 2017; §3.2; Figure 2b). Finally, we perform multiple vector quantizations over
different parts of z to mitigate mode collapse (§3.3).

3.1 GUMBEL-SOFTMAX

The Gumbel-Softmax (Gumbel, 1954; Jang et al., 2016; Maddison et al., 2014) enables selecting
discrete codebook variables in a fully differentiable way and we use the straight-through estimator
of Jang et al. (2016). Given the dense representation z, we apply a linear layer, followed by a ReLU
and another linear which outputs l 2 RV logits for the Gumbel-Softmax. At inference, we simply
pick the largest index in l. At training, the output probabilities for choosing the j-th variable are

pj =
exp(lj + vj)/⌧PV

k=1 exp(lk + vk)/⌧
, (2)

where v = � log(� log(u)) and u are uniform samples from U(0, 1). During the forward pass,
i = argmaxjpj and in the backward pass, the true gradient of the Gumbel-Softmax outputs is used.

3.2 K-MEANS

The vector quantization approach of van den Oord et al. (2017) is an alternative to making the index
selection procedure fully differentiable. Different to their setup, we optimize a future time step
prediction loss instead of the reconstruction loss of an autoencoder.

We choose the codebook variable representation by finding the closest variable to the input features
z in terms of the Euclidean distance, yielding i = argminjkz � ejk22. During the forward pass, we
select ẑ = ei by choosing the corresponding variable from the codebook. We obtain gradients for
the encoder network by back-propagating dLwav2vec/dẑ (van den Oord et al., 2017). The final loss
has two additional terms:

L =
KX

k=1

Lwav2vec
k +

⇣
ksg(z)� ẑk2 + �kz� sg(ẑ)k2

⌘
, (3)

where sg(x) ⌘ x, d
dx sg(x) ⌘ 0 is the stop gradient operator and � is a hyperparameter. The first

term is the future prediction task and gradients do not change the codebook because of the straight-
through gradient estimation of mapping z to ẑ. The second term ksg(z)� ẑk2 moves the codebook
vectors closer to the encoder output, and the third term kz � sg(ẑ)k2 makes sure that the encoder
outputs are close to a centroid (codeword).

3
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wav2vec 2.0 – masked acoustic modelling
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Deep clustering and masked prediction

HuBERT: Hidden Unit BERT
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HuBERT
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HuBERT: Clustering happens offline (MFCC)
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https://blog.devgenius.io/hubert-explained-6ec7c2bf71fc
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HuBERT: Clustering happens offline (latents)
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https://blog.devgenius.io/hubert-explained-6ec7c2bf71fc
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Student – Teacher 

BYOL
Data2vec
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Bootstrap Your Own Latent (BYOL) 
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Bootstrap Predictive Coding (BPC)
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Summary

• Supervised feature learning embedded within the ASR system is competitive with state-of-the-
art systems that use handcrafted features. 

• Self-supervised learning to extract a latent representation for features is a powerful approach 
minimizing information loss from the raw signal and leveraging large amounts of unlabelled data. 

• Covered contrastive and non-contrastive SSL methods, and two pretext tasks: masked acoustic 
modelling and autoregressive modelling. All methods apply loss to the latent representations.

• Background reading:
• A van den Oord et al (2018) “Representation learning with Contrastive Predictive 

Coding”. Arxiv.
• A Baevski et al (2020). “wav2vec 2.0: A framework for self-supervised learning of speech 

representations. NeurIPS.
• W Hsu et al (2021). “HuBERT: Self-supervised speech representation learning by masked 

prediction of hidden units”. IEEE/ACM Transactions on Audio, Speech and Language processing.
• JB Grill et al (2020). “Bootstrap your own latent: A new approach to self-supervised 

learning”. NeurIPS.
• A Baevski et al (2022). “Data2vec: A general framework for self-supervised learning in 

speech, vision and language”. ICML.
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