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Speaker independent / dependent / adaptive

Speaker independent (SI) systems have long been the focus
for research in transcription, dialogue systems, etc.

Speaker dependent (SD) systems can result in much lower
word error rates than SI systems (given the same amount of
training data)

A Speaker adaptive (SA) system... we would like

Error rates similar to SD systems
Building on an SI system
Requiring only a small fraction of the speaker-specific training
data used by an SD system
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Speaker-specific variation

Acoustic model

Speaking styles
Accents
Speech production anatomy (eg length of the vocal tract)

Also non-speaker variation, such as channel conditions
(telephone, reverberant room, close talking mic) and
application domain

Speaker adaptation of acoustic models aims to reduce the
mismatch between test data and the trained models

Pronunciation model: speaker-specific, consistent change in
pronunciation

Language model: user-specific documents (exploited in
personal dictation systems)
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Modes of adaptation

Supervised or unsupervised

Supervised: the word level transcription of the adaptation
data is known
Unsupervised: no transcription provided

Static or dynamic

Static: Adaptation data presented to the system in a block
before the final system is estimated (eg enrolment in a
dictation system)
Dynamic: Adaptation data incrementally available, models
must be adapted before all adaptation data is available (eg
spoken dialogue system)

Desirable properties for speaker adaptation

Compact: relatively few speaker-dependent parameters
Efficient: low computational requirements
Flexible: applicable to different model variants
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Approaches to adaptation

Model based: Adapt the parameters of the acoustic models to
better match the observed data

Maximum a posteriori (MAP) adaptation of HMM/GMM
parameters
Maximum likelihood linear regression (MLLR) of GMM
parameters
Learning Hidden Unit Contributions (LHUC) for neural
networks

Speaker normalization: Normalize the acoustic data to reduce
mismatch with the acoustic models

Vocal Tract Length Normalization (VTLN)
Constrained MLLR (cMLLR) — model-based normalisation

Speaker space: Estimate multiple sets of acoustic models,
characterizing new speakers in terms of these model sets

i-vectors/speaker codes
Cluster-adaptive training
Eigenvoices
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Model-based adaptation: MAP training of GMMs

Basic idea MAP training balances the parameters estimated
on the SI data with estimates from the new data
Consider the mean of the mth Gaussian in the jth state, µmj

ML estimate of SI model:

µmj =

∑
n γjm(n)xn∑
n γjm(n)

where γjm(n) is the component occupation probability

MAP estimate for the adapted model:

µ̂ =
τµ0 +

∑
n γ(n)xn

τ +
∑

n γ(n)

τ controls balances the SI estimate and the adaptation data
(typically 0 ≤ τ ≤ 20)
xn is the adaptation vector at time n
γ(n) the probability of this Gaussian at this time

As the amount of training data increases, MAP estimate
converges to ML estimate
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The MLLR family (adapting GMMs)

Basic idea Rather than directly adapting the model
parameters, learn a transform to apply to the Gaussian means
and covariances

Problem: MAP training only adapts parameters belonging to
observed components – with many Gaussians and a small
amount of adaptation data, most Gaussians are not adapted

Solution: share adaptation parameters across Gaussians –
each adaptation data point can then affect many (or all) of
the Gaussians in the system

Since there are relatively few adaptation parameters,
estimation is robust

Maximum Likelihood Linear Regression (MLLR) – use a
linear transform to share adaptation parameters across
Gaussians
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MLLR: Maximum Likelihood Linear Regression

MLLR adapts the means of the Gaussians by applying an
affine (linear) transform of mean parameters

µ̂ = Aµ + b

If the observation vectors are d-dimension, then A is a d × d
matrix and b is d-dimension vector

If we define W = [bA] and η = [1µT ]T , then we can write:

µ̂ = Wη

In MLLR, W is estimated so as to maximize the likelihood of
the adaptation data

A single transform W can be shared across a set of Gaussian
components (even all of them!)
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How many transforms?

A set of Gaussian components that share a transform is called
a regression class

In practice the number of regression is often small: one per
context-independent phone class, one per broad class, two
(speech/non-speech), or just a single transform for all
Gaussians

The number of regression classes may also be obtained
automatically by constructing a regression class tree

Each node in the tree represents a regression class sharing a
transform
For an adaptation set, work down the tree until arriving at the
most specific set of nodes for which there is sufficient data
Regression class tree constructed in a similar way to state
clustering tree
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Estimating the transforms

The linear transformation matrix W is obtained by setting it
to optimize the log likelihood

Mean adaptation: Log likelihood

L =
∑
r

∑
n

γr (n) log

(
Kr exp

(
−1

2
(xn −Wηr )TΣ−1r (xn −Wηr )

))
where r ranges over the components belonging to the
regression class and Kr is a constant not dependent on W

Differentiating L and setting to 0 results in an equation for W:
there is no closed form solution if Σ is full covariance; can be
solved if Σ is diagonal (but requires a matrix inversion)

Variance adaptation is also possible

See Gales and Woodland (1996), Gales (1998) for details
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MLLR in practice

Mean-only MLLR can result in 10–15% relative reduction in
WER

Few regression classes and well-estimated transforms work
best in practice

Robust adaptation available with about 1 minute of speech;
performance similar to SD models available with 30 minutes
of adaptation data

Such linear transforms can account for any systematic (linear)
variation from the speaker independent models, for example
those caused by channel effects.

ASR Lecture 13 Speaker Adaptation 11



Constrained MLLR (cMLLR)

Basic idea use the same linear transform for both mean and
covariance

µ̂ = A′µ− b′

Σ̂ = A′ΣA′
T

No closed form solution but can be solved iteratively

Log likelihood for cMLLR

L = N (Axn + b;µ,Σ) + log(|A|) A′ = A−1 ; b′ = Ab

Equivalent to applying the linear transform to the data!
Also called fMLLR (feature space MLLR)

Similar improvement in accuracy to standard MLLR

Can be used as model-based feature normalisation in which
the features can then be used in any system
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Speaker-adaptive training (SAT)

Basic idea Rather than SI seed (canonical) models, construct
models designed for adaptation – adapt the base models to
the training speakers while training

Estimate parameters of canonical models by training MLLR
mean transforms for each training speaker
Train using the MLLR transform for each speaker; interleave
Gaussian parameter estimation and MLLR transform
estimation

SAT results in much higher training likelihoods, and improved
recognition results

But: increased training complexity and storage requirements

SAT using cMLLR, corresponds to a type of speaker
normalization at training time
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GMM UBM system

 IEEE SIGNAL PROCESSING MAGAZINE [87] NOVEMBER 2015

advancement achieved by the so-called GMM–UBM method. In this 
approach, a speaker’s GMM is adapted or derived from the UBM 
using Bayesian adaptation [103]. In contrast to performing maxi-
mum likelihood training of the GMM for an enrollment speaker, 
this model is obtained by updating the well-trained UBM parame-
ters. This relation between the speaker model and the background 
model provides better performance than independently trained 
GMMs and also lays the foundation for the speaker model adapta-
tion techniques that were developed later. We will return to these 
relations as we proceed. In the following subsections, we describe 
the formulations of this approach.

The LR Test
Given an observation O and a hypothesized speaker ,s  the task of 
speaker verification can be stated as a hypothesis test between
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In the GMM–UBM approach, the hypothesis H0  and H1  are repre-
sented by a speaker-dependent GMM sm  and the UBM .0m  Thus, 
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where x  is the decision threshold. Usually, the LR test is per-
formed in the logarithmic scale, providing the so-called log-LR

 ( ) ( | ) ( | ) .log logp pX X Xs 0m mK = -  (2)

Maximum A Posteriori Adaptation of UBM
Let { | }x n T1X n f!=  denote the set of acoustic feature vectors 
obtained from the enrollment speaker s. Given a UBM as in (1) and 
the enrollment speaker’s data X, at first the probabilistic align-
ment of the feature vectors with respect the UBM components is 
calculated as
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Next, the values of ( )gnc  values are used to calculate the sufficient 
statistics for the weight, mean, and covariance parameter as

 ( ) ( ) ,

( ) ( ) .

( ) ( ),

F x

x x

g g

S g g

N g g

s n
n

T

n

s n
n

T

n n
T

s n
n

T

1

1

1

c

c

c

=

=

=

=

=

=

/

/

/

 

These quantities are known as the zero-, first-, and second-order 
Baum–Welch statistics, respectively. Using these parameters, the 
posterior mean and covariance matrix of the features given the 
data vectors X  can be found as
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The maximum a posteriori (MAP) adaptation update equations for 
weight, mean, and covariance, (3), (4), and (5), respectively, are 
proposed in [103] and used in [6] for speaker verification

 [ ( ) / ( ) ] ,N g T 1g g s g gr a a r b= + -t  (3)
 [ | ] ( )xE 1Xg g g n gn a a= + -t ,gn  (4)
 [ | ] ( ) .x xE 1Xg g g n n

T
g g g g

T
g g

Ta a n n n nR R= + - + -t t t^ h  (5)

The scaling factor b  in (3) is computed from all the adapted mix-
ture weights to ensure that they sum to unity. Thus, the new GMM 
parameters are a weighted summation of the UBM parameters and 
the sufficient statistics obtained from the observed data (see 
“GMM–UBM System: Summary”). The variable ga  is defined as
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[FIG7] A schematic diagram of a GMM–UBM system using a four-mixture UBM. MAP adaptation procedure and supervector formation 
by concatenating the mean vectors are also illustrated. (a) A schematic diagram of a GMM–UBM system using a four-mixture UBM.  
(b)MAP adaptation procedure and supervector formation by concatenating the mean vectors are also illustrated.Source: Hansen and Hasan, 2015
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i-Vectors

Represent a speaker using the GMM (mean) parameters –
concatenate the target speaker mean parameters to form a
GMM supervector ms . Typical dimension of a UBM GMM
is 2048, so with 39-dimension parameters, this can be a very
high dimension vector (∼ 80, 000 components)
Represent the supervector for an utterance X u as the
combination of the UBM supervector and the utterance
i-vector (Dehak et al, 2011):

mu = m0 + Twu

mu and m0 are D-dimension supervectors for the utterance u
and the UBM
wu is the i-vector (“identity vector”) – a reduced dimension
(d) representation for utterance u (d ∼ 400)
T is a D × d matrix (sometimes called the “total variability
matrix”) which projects the supervector down to the i-vector
representation
Estimate T for the development corpus using an EM algorithm
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Adapting hybrid HMM/NN
systems
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Speaker adaptation in hybrid HMM/NN systems:
CMLLR feature transformation

Basic idea: If HMM/GMM system is used to estimate a single
constrained MLLR adaptation transform, this can be viewed
as a feature space transform

Use the HMM/GMM system with the same tied state space
to estimate a single CMLLR transform for a given speaker,
and use this to transform the input speech to the DNN for the
target speaker transform)

Limited to a single transform (regression class)

Does not require any modification to the parameters of the
DNN itself
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Speaker adaptation in hybrid HMM/NN systems:
LIN – Linear Input Network

Basic idea: single linear input layer trained to map input
speaker-dependent speech to speaker-independent network

Training: linear input network (LIN) can either be fixed as the
identity or (adaptive training) be trained along with the other
parameters

Testing: freeze the main (speaker-independent) network and
propagate gradients for speech from the target speaker to the
LIN, which is updated — linear transform learned for each
speaker

Requires supervised training data
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LIN

3-8 hidden layers

~2000 hidden units

~6000 CD phone outputs

9x39 MFCC inputs

~2000 hidden units
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LIN

3-8 hidden layers

~2000 hidden units

~6000 CD phone outputs

9x39 MFCC inputs

~2000 hidden units

Transformed inputs

Linear input
network

Fixed

Adapted
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Speaker adaptation in hybrid HMM/NN systems:
Speaker codes

Basic idea: Learn a short speaker code vector for each talker

speaker. Moreover, the speaker code size can be freely adjusted ac-
cording to the amount of available adaptation data. As a result, it is
possible to conduct a very fast adaptation of the hybrid NN/HMM
model for each speaker based on only a small amount of adaptation
data. Experimental results on TIMIT have shown that it is possible
to achieve over 10% relative reduction in phone error rate by using
only seven adaptation utterances.

2. MODEL DESCRIPTION

The baseline model is a hybrid NN-HMM model similar to the one
described in [17]. The NN computes posteriori probabilities of all
HMM states given each input feature vector. The NN inputs are con-
catenated super-vector consisting of all speech feature vectors within
a window of a number of consecutive frames. The baseline NN-
HMM model is trained without using any speaker labels information.
The NN training targets are HMM state labels. The standard back
propagation procedure is used to optimize the NN weights where the
cross entropy is used as an objective function.

As shown in the right side of Fig. 1, the proposed speaker adap-
tation method relies on learning another generic adaptation NN as
well as some speaker specific codes. The adaptation NN is inserted
above the input layer of original NN-HMM model. All layers of the
adaptation NN are standard fully connected layers with a weight ma-
trix, denoted as W(l)

a with l representing l-th layer of the adaptation
NN. The top layer of the adaptation NN represents the transformed
features and its size matches the input size.

In addition, each layer of the adaptation NN receives all activa-
tion output signals of the lower layer along with a speaker-specific
input vector, S , named as speaker code. When we estimate the adap-
tation NN using the back-propagation (BP) algorithm, the derivatives
of the objective function are calculated with respect to all weights
W(l)

a (for all l) as well as the associated speaker code S . As a result,
both of the weights and speaker codes will be learned. For exam-
ple, when we apply a speech vector from i-th speaker to update the
adaptation NN in BP, we use the computed derivatives to update all
weights, W(l)

a (for all l), and the speaker code Si specific to the i-th
speaker. In this way, we will be able to benefit from speaker la-
bels to learn a generic adaptation NN as well as a whole bunch of
speaker codes at the end of the BP training process. Each speaker
has his/her own speaker code and each speaker code, Si, is a very
compact feature vector representing speaker-dependent information.
The speaker code is fed to the adaptation NN to control how each
speaker’s data is transformed to a general speaker-independent fea-
ture space by the generic adaptation NN. Moreover, this model con-
figuration provides a very effective way to conduct speaker adapta-
tion for the hybrid NN/HMM model. To adapt an existing hybrid
NN/HMM model to a new speaker, only a new speaker code, S ,
needs to be estimated without changing any weights in both original
NN and adaptation NN in Fig. 1.

The advantage of our proposed method is that only a small
speaker code needs to be estimated for each new speaker. This
largely reduces the required amount of adaptation data per speaker
particularly when a small speaker code is chosen for each speaker.
As a result, it is possible conduct very rapid speaker adaptation for
the hybrid NN-HMM model based on only a few utterances per
speaker. On the other hand, if a large amount of adaptation data is
available per speaker, the size of speaker code can be increased to
allow a better representation of each speaker. Moreover, the generic
adaptation NN is learned using all training data. This allows to
build a large-scale adaptation NN that is powerful enough to model

 

Speaker 
Code 

Features 
vector 

Features 
vector 

Original Network 

Adaptation 
NN 

Original 
Network 

Composite NN 

Transformed 
Features 

Fig. 1. Speaker adaptation of the hybrid NN-HMM model based on
speaker code.

a complex transformation function between different feature spaces.
This method is clearly superior to other speaker adaptation methods
that learn a complete independent transform for each speaker, where
each transformation needs to be linear.

2.1. Training

During training, we want to learn three sets of parameters: the orig-
inal NN weights, the adaptation weights, and the training speakers
codes. First of all, the original NN weights is learned without in-
serting the adaptation weights in the same way as a standard hybrid
NN-HMM model without using any speaker information. This re-
sults in a speaker independent (SI) NN-HMM model.

Secondly, the adaptation layers are inserted and all adaptation
weights, W(l)

a (for all l), and speakers codes Si for all speakers in
the training set, are learned jointly in such a way that the frame-
wise classification performance is optimized. In this paper, these
parameters are optimized using the standard back-propagation al-
gorithm with the cross entropy objective function. Both adaptation
weights and speaker codes are initialized randomly at the beginning.
No weight in the original NN is modified during this phase.

Of course, other training scenarios are possible here. For exam-
ple, all or part of the original NN weights can be further fine tuned
when learning the adaptation NN to further optimize the whole net-
work because speaker labels are considered in this phase. Another
possibility is to learn all the three sets of parameters at the same time.
However, this may result in two inseparable NNs and they eventu-
ally become one large deep NN with only a number of lower layers
receiving a speaker code. Another possibility is to use the learned
adaptation NN to transform all training data and a new NN is learned
from scratch. This NN receives speaker-normalized features instead
of the original features. This can be considered as a form of speaker
adaptive training for the NN-HMM model.

2.2. Adaptation

After learning all adaptation NN weights using all training data as
above, adaptation to a new speaker is done by learning a new speaker
code for each new speaker who is not observed in the training set.

����

ASR Lecture 13 Speaker Adaptation 20



Speaker adaptation in hybrid HMM/NN systems:
i-vectors

Basic idea: Use i-vectors (speaker identity vectors) as speaker
code

Allows model to be applied to unseen speakers without further
training

i-vectors are λs are extracted for each training speaker

extracting multiple i-vectors per speaker adds robustness

i-vectors are extracted using all available data for each test
speaker

highly effective for dynamic speaker adaptation
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Speaker adaptation in hybrid HMM/NN systems:
LHUC – Learning Hidden Unit Contributions

Basic idea: Add a learnable speaker
dependent amplitude to each
hidden unit

Speaker independent: amplitudes
set to 1

Speaker dependent: learn
amplitudes from data, per speaker

3-8 hidden layers

~2000 hidden units

~6000 CD phone outputs

~2000 hidden units

 inputs

X X

XX

r1
1 r1

n

rk
nrk

1
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Speaker adaptation in hybrid HMM/NN systems:
Experimental Results on TED

Adaptation WER/%

None 15.7

CMLLR 15.0
+LHUC 14.4
+i-vector 14.8

+LHUC 14.2

Samarakoon and Sim (2016), “On combining i-vectors and
discriminative adaptation methods for unsupervised speaker
normalization in DNN acoustic models”, ICASSP.
https://ieeexplore.ieee.org/abstract/document/7472684
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Many other methods...

Other methods include:

KL-divergence regularisation

Structured transforms

Multi-task learning

Data augmentation

Adversarial training

See Bell et al (2021), Adaptation Algorithms for Neural
Network-Based Speech Recognition: An Overview
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Summary

Speaker Adaptation

An intensive area of speech recognition research since the
early 1990s

HMM/GMM

Substantial progress, resulting in significant, additive,
consistent reductions in word error rate
Close mathematical links between different approaches
Linear transforms at the heart of many approaches
MLLR family is very effective

HMM/NN

Open research topic
GMM-based feature space transforms (CMLLR), i-vectors, and
LHUC are effective (and complementary)
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