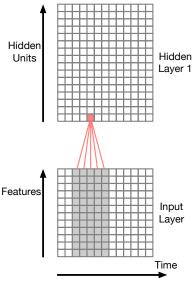
Neural Networks for Acoustic Modelling 3: DNN architectures

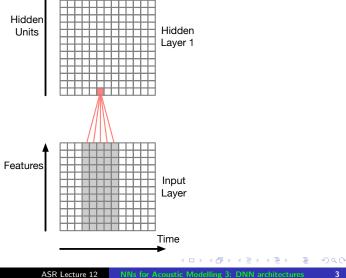
Peter Bell

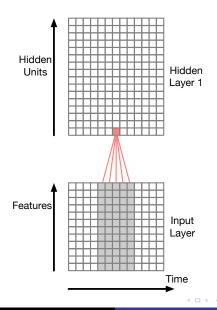
Automatic Speech Recognition – ASR Lecture 12 2 March 2023

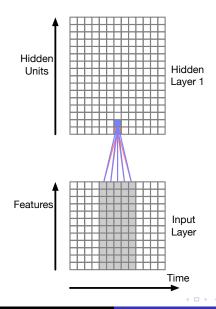
Modelling acoustic context

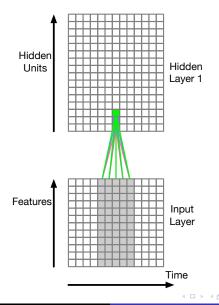
- DNNs allow the network to model acoustic context by including neighbouring frame in the input layer – the output is thus estimating the phone or state probability using that contextual information
- Richer NN models of acoustic context:
 - Time-delay neural networks (TDNNs)
 - each layer processes a context window from the previous layer
 - higher hidden layers have a wider receptive field into the input
 - Recurrent neural networks (RNNs)
 - ullet hidden units at time t take input from their value at time t-1
 - these recurrent connections allow the network to learn state
 - Both approaches try to learn invariances in time, and form representations based on compressing the history of observations
- We'll also mention CNNs and Transformers

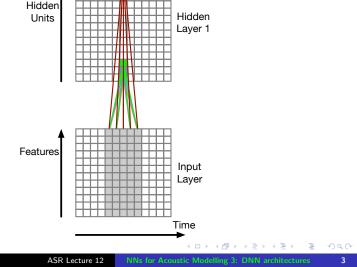


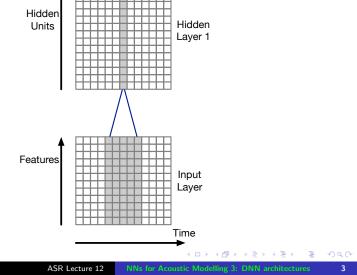




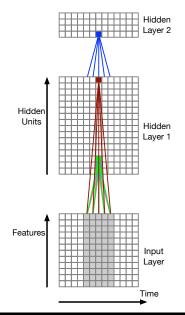






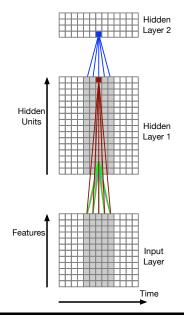


TDNNs - second hidden layer receptive field



- Higher hidden layers take input from a time window over the previous hidden layer
- Lower hidden layers learn from narrower contexts, higher hidden layers from wider acoustic contexts
- Receptive field increases for higher hidden layers

TDNNs - second hidden layer receptive field

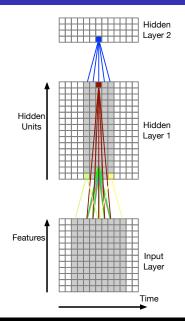


- Higher hidden layers take input from a time window over the previous hidden layer
- Lower hidden layers learn from narrower contexts, higher hidden layers from wider acoustic contexts

NNs for Acoustic Modelling 3: DNN architectures

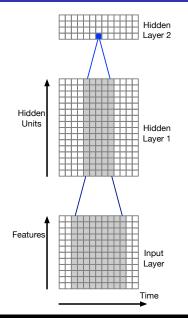
 Receptive field increases for higher hidden layers

TDNNs – second hidden layer receptive field



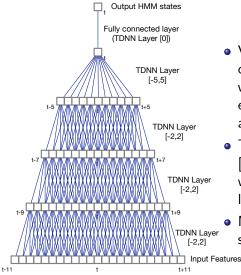
- Higher hidden layers take input from a time window over the previous hidden layer
- Lower hidden layers learn from narrower contexts, higher hidden layers from wider acoustic contexts
- Receptive field increases for higher hidden layers

TDNNs - second hidden layer receptive field



- Higher hidden layers take input from a time window over the previous hidden layer
- Lower hidden layers learn from narrower contexts, higher hidden layers from wider acoustic contexts
- Receptive field increases for higher hidden layers

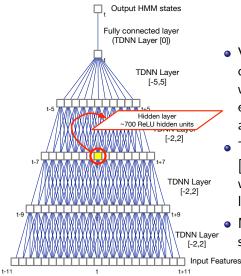
Example TDNN Architecture



- View a TDNN as a 1D convolutional network with the transforms for each hidden unit tied across time
- TDNN layer with context [-2,2] has 5x as many weights as a regular DNN layer
- More computation, more storage required!

NNs for Acoustic Modelling 3: DNN architectures

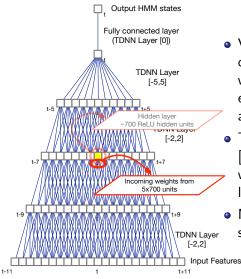
Example TDNN Architecture



- View a TDNN as a 1D convolutional network with the transforms for each hidden unit tied across time
- TDNN layer with context [-2,2] has 5x as many weights as a regular DNN layer
- More computation, more storage required!

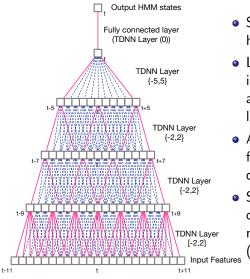
NNs for Acoustic Modelling 3: DNN architectures

Example TDNN Architecture



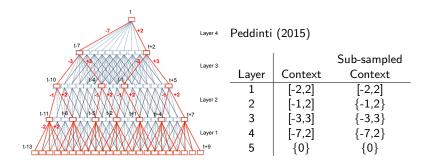
- View a TDNN as a 1D convolutional network with the transforms for each hidden unit tied across time
- TDNN layer with context [-2,2] has 5x as many weights as a regular DNN layer
- More computation, more storage required!

Sub-sampled TDNN



- Sub sample window of hidden unit activations
- Large overlaps between input contexts at adjacent time steps – likely to be correlated
- Allow gaps between frames in a window (cf. dilated convolutions)
- Sub-sampling saves computation and reduces number of model size (number of weights)

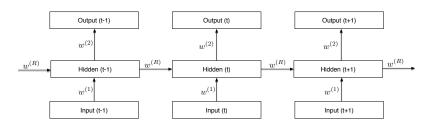
Example sub-sampled TDNN



- Increase the context for higher layers of the network
- Subsampled so that difference between sampled hidden units is multiple of 3 to enable "clean" sub-sampling
- Asymmetric contexts
- MFCC features in this case

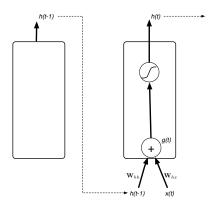
Recurrent Networks

Recurrent network



- View an RNN for a sequence of T inputs as a T-layer network with shared weights
- Train by doing backpropagation through this unfolded network
- Recurrent hidden units are state units: can keep information through time
 - State units as memory remember things for (potentially) an infinite time
 - State units as information compression compress the history (sequence observed up until now) into a state representation

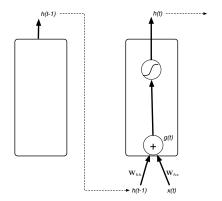
Simple recurrent network unit



$$oldsymbol{g}(t) = oldsymbol{W}_{h imes}oldsymbol{x}(t) + oldsymbol{W}_{hh}oldsymbol{h}(t-1) + oldsymbol{b}_h \ oldsymbol{h}(t) = anh\left(oldsymbol{g}(t)
ight)$$

10

LSTM

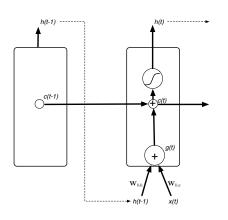


LSTM - Internal recurrent state

c(t-1) g(t) ----- h(t-1)

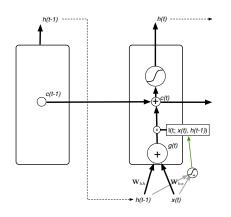
• Internal recurrent state ("cell") c(t) combines previous state c(t-1) and LSTM input g(t)

LSTM - Internal recurrent state



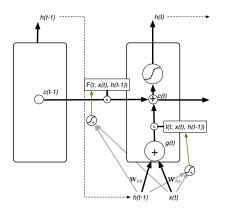
- Internal recurrent state ("cell") c(t) combines previous state c(t-1) and LSTM input g(t)
- Gates weights dependent on the current input and the previous state

LSTM - Input Gate



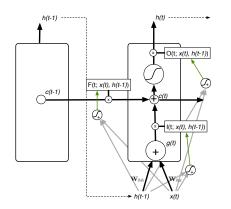
- Internal recurrent state ("cell") c(t) combines previous state c(t-1) and LSTM input g(t)
- Gates weights dependent on the current input and the previous state
- Input gate: controls how much input to the unit g(t) is written to the internal state c(t)

LSTM Input and Forget Gate



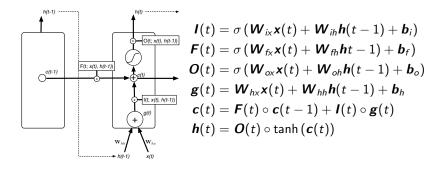
- Internal recurrent state ("cell") c(t) combines previous state c(t-1)and LSTM input g(t)
- Gates weights dependent on the current input and the previous state
- Input gate: controls how much input to the unit g(t) is written to the internal state c(t)
- Forget gate: controls how much of the previous internal state c(t-1) is written to the internal state c(t)
 - Input and forget gates

LSTM – Input, Forget and Output Gates



Output gate: controls
 how much of each unit's
 activation is output by the
 hidden state – it allows
 the LSTM cell to keep
 information that is not
 relevant at the current
 time, but may be relevant
later

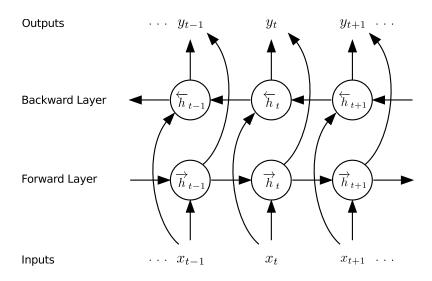
LSTM



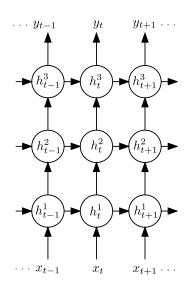
Aovids the vanishing gradient problem of conventional RNNs

C Olah (2015), Understanding LSTMs, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

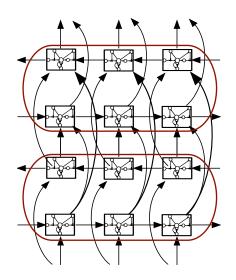
Bidirectional RNN



Deep RNN



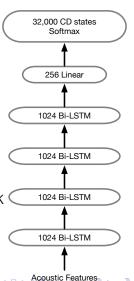
Deep Bidirectional LSTM



16

Example: Deep Bidirectional LSTM Acoustic Model (Switchboard)

- LSTM has 4-6 bidirectional layers with 1024 cells/layer (512 each direction)
- 256 unit linear bottleneck layer
- 32k context-dependent state outputs
- Input features
 - 40-dimension linearly transformed MFCCs (plus ivector)
 - 64-dimension log mel filter bank features (plus first and second derivatives)
 - concatenation of of MFCC and FBANK features
- Training: 14 passes frame-level cross-entropy training, 1 pass sequence training (2 weeks on a K80 GPU)



NNs for Acoustic Modelling 3: DNN architectures

Switchboard Results

	Test Set WER/%	
Network Architecture	Switchboard	CallHome
GMM (ML)	21.2	36.4
GMM (BMMI)	18.6	33.0
DNN (7×2048) / CE	14.2	25.7
DNN (7×2048) / MMI	12.9	24.6
TDNN (6×1024) / CE	12.5	
TDNN (6×576) / LF-MMI	9.2	17.3
LSTM (4×1024)	8.0	14.3
LSTM (6×1024)	7.7	14.0
LSTM-6 $+$ feat fusion	7.2	12.7

GMM and DNN results – Vesely et al (2013); TDNN-CE results – Peddinti et al (2015); TDNN/LF-MMI results – Povey et al (2016); LSTM results – Saon et al (2017)

Combining models, and with multiple RNN language models, WER reduced to 5.5/10.3% (Saon et al, 2017)

Summary and Conclusions

- Scaling DNNs for large vocabulary speech recognition
- LSTM recurrent networks and TDNNs offer different ways to model temporal context

Reading

 A Maas et al (2017). "Building DNN acoustic models for large vocabulary speech recognition", Computer Speech and Language, 41:195–213.

https://arxiv.org/abs/1406.7806

 V Peddinti et al (2015). "A time delay neural network architecture for efficient modeling of long temporal contexts", Interspeech.

https://www.isca-speech.org/archive/interspeech_2015/i15_3214.html

Background Reading:

 G Hinton et al (Nov 2012). "Deep neural networks for acoustic modeling in speech recognition", *IEEE Signal Processing Magazine*, 29(6), 82–97.

http://ieeexplore.ieee.org/document/6296526

 Hervé Bourlard (1992). "CDNN: A context-dependent neural network for speech recognition", Proc. ICASSP