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Modelling acoustic context

@ DNNs allow the network to model acoustic context by
including neighbouring frame in the input layer — the output is
thus estimating the phone or state probability using that
contextual information

@ Richer NN models of acoustic context:

o Time-delay neural networks (TDNNs)

@ each layer processes a context window from the previous layer
o higher hidden layers have a wider receptive field into the input

o Recurrent neural networks (RNNs)

o hidden units at time t take input from their value at time t — 1
@ these recurrent connections allow the network to learn state

e Both approaches try to learn invariances in time, and form
representations based on compressing the history of
observations

@ We'll also mention CNNs and Transformers
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TDNNs — first hidden layer receptive field

A
Hidden
Units Hidden
Layer 1
Features
Input
Layer

Time

ASR Lecture 12 3



TDNNs — first hidden layer receptive field

A
Hidden
Units Hidden
Layer 1
Features
Input
Layer

Time

ASR Lecture 12 3




TDNNs — first hidden layer receptive field

A
Hidden
Units Hidden
Layer 1
Features
Input
Layer

Time

ASR Lecture 12 3



TDNNs — first hidden layer receptive field

A
Hidden
Units Hidden
Layer 1
Features
Input
Layer

Time

ASR Lecture 12 3



TDNNs — first hidden layer receptive field

A
Hidden
Units Hidden
Layer 1
Features
Input
Layer

Time

ASR Lecture 12 3



TDNNs — first hidden layer receptive field

A
Hidden
Units Hidden
1t Layer 1
HH
LI
L
THH
Features
Input
Layer

Time

ASR Lecture 12 3



TDNNs — first hidden layer receptive field

A
Hidden
Units Hidden
Layer 1
Features
Input
Layer

Time

ASR Lecture 12 3



TDNNs — second hidden layer receptive field
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TDNNs — second hidden layer receptive field
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Example TDNN Architecture

‘ Output HMM states

Fully connected layer
(TDNN Layer [0])

TDNN Layer

[-5,]
“ MAAMMMMRMMM
DA COUE VALK TD'\[I_’\; Iéiayer
AL ’
HIIIIIIIIIIIIIIIIPJ
OO
MU AL UKL TD'\[I_';E?yer
t79|||||}|<IIII}IQ}IMIQIIIIIIIM9
A
UROECR R EDE XX TD’}‘»Z’;]ayer
L

w11

@ View a TDNN as a 1D
convolutional network
with the transforms for
each hidden unit tied
across time

TDNN layer with context
[-2,2] has 5x as many
weights as a regular DNN
layer

@ More computation, more

storage required!
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Example TDNN Architecture
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Sub-sampled TDNN

‘ Output HMM states

@ Sub sample window of
Fully connected layer . . . .
(TDNN Layer (0)) hidden unit activations

o Large overlaps between
TDNN Layer .
{-5.5) input contexts at
adjacent time steps —
likely to be correlated

TDNN Layer
22} @ Allow gaps between
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TDNN Layer
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Example sub-sampled TDNN

s Peddinti (2015)

Loy Sub-sampled
Layer | Context Context
1 [-2,2] [-2,2]
rever? 2 [-1,2] {-1,2}
3 [-3.3] {-3,3}
Layer 1 4 [-7.2] {-7,2}
13 t+9 5 {0} {0}

Increase the context for higher layers of the network

Subsampled so that difference between sampled hidden units
is multiple of 3 to enable “clean” sub-sampling

@ Asymmetric contexts
@ MFCC features in this case
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Recurrent Networks
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Recurrent network
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@ View an RNN for a sequence of T inputs as a T-layer network

with shared weights

@ Train by doing backpropagation through this unfolded network
@ Recurrent hidden units are state units: can keep information

through time

e State units as memory — remember things for (potentially) an

infinite time

e State units as information compression — compress the history
(sequence observed up until now) into a state representation
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Simple recurrent network unit

h(t-1) -~ h(t) === -
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———————————————— h(t-1) x(t)

g(t) = Wpex(t) + Wpph(t — 1) + by,
h(t) = tanh (g(t))
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LSTM — Internal recurrent state

o Internal recurrent state
(“cell") ¢(t) combines
previous state c(t — 1)
and LSTM input g(t)
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LSTM — Internal recurrent state

o Internal recurrent state
(“cell") ¢(t) combines
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and LSTM input g(t)

@ Gates - weights dependent
on the current input and
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v

h(t-1) -------- [ —

O“”' v 4

J >

9(t)

Win \Whz

——————————————— h(t-1) X

ASR Lecture 12 11



LSTM — Input Gate

o Internal recurrent state
(“cell") ¢(t) combines
previous state c(t — 1)
and LSTM input g(t)

@ Gates - weights dependent
on the current input and
the previous state

h(t-1) --------- () ----mmmeeen -

o Input gate: controls how
much input to the unit
g(t) is written to the
internal state c(t)

oft-1) el

I(t; x(t), h(t-1))

———————————————— h(t-1) x(t)
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LSTM - Input and Forget Gate

c(t-1)
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Internal recurrent state
(“cell") ¢(t) combines
previous state c(t — 1)
and LSTM input g(t)

Gates - weights dependent
on the current input and
the previous state

Input gate: controls how
much input to the unit
g(t) is written to the
internal state c(t)
Forget gate: controls
how much of the previous
internal state c(t — 1) is
written to the internal
state c¢(t)

ASR Lecture 12



LSTM — Input, Forget and Output Gates

h(t-1) ===~ [ — -

@ Output gate: controls
how much of each unit's
activation is output by the
hidden state — it allows
the LSTM cell to keep

(0, h(t-1) information that is not

relevant at the current

time, but may be relevant
later
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I(t) = o (Wix(t) + Wiph(t — 1) + b;)
F(t :J(fox( )—|— W g ht — 1)+bf)
t) = o (Woxx(t) + Wopnh(t — 1) + b,)

(t)
(t)
(t) =
g(t) = Wpex(t) + Wpph(t — 1) + by,
(t)
(t)

o

oft-1)
O

t) = F(t)oc(t— 1)+ 1(t) o (1)
t) = O(t) o tanh (¢(t))

Aovids the vanishing gradient problem of conventional RNNs

C Olah (2015), Understanding LSTMs, http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/
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Bidirectional RNN

Outputs s Y1 Yt Yt+1

Backward Layer 4— @ @
Forward Layer @ @ —>

Inputs cee Tpq Tt Tit1
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Deep RNN

- Yt—1 Yt Yt+1 - - -

C L1 Lt L1 - - -
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Deep Bidirectional LSTM
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Example: Deep Bidirectional LSTM Acoustic Model

(Switchboard)

@ LSTM has 4-6 bidirectional layers with 32,000 CD states )

Softmax

1024 cells/layer (512 each direction)

@ 256 unit linear bottleneck layer
@ 32k context-dependent state outputs 2% LE‘”‘*“ D

@ Input features

e 40-dimension linearly transformed wiﬁw

MFCCs (plus ivector)

e 64-dimension log mel filter bank C roeamisM )
features

(plus first and second derivatives)

e concatenation of of MFCC and FBANK ( 1024 Bi-LSTM )

features
@ Training: 14 passes frame-level C 1o24Bis™M )
cross-entropy training, 1 pass sequence
training (2 weeks on a K80 GPU) Acoustic Features
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Switchboard Results

Test Set WER/%

Network Architecture Switchboard CallHome
GMM (ML) 21.2 36.4
GMM (BMMI) 18.6 33.0
DNN (7x2048) / C 14.2 25.7
DNN (7x2048) / MMI 12.9 24.6
TDNN (6x1024) / CE 12,5

TDNN (6x576) / LF-MMI 9.2 17.3
LSTM (4x1024) 8.0 14.3
LSTM (6x1024) 7.7 14.0
LSTM-6 + feat fusion 7.2 12.7

GMM and DNN results — Vesely et al (2013); TDNN-CE results —
Peddinti et al (2015); TDNN/LF-MMI results — Povey et al (2016);
LSTM results — Saon et al (2017)

Combining models, and with multiple RNN language models, WER
reduced to 5.5/10.3% (Saon et al, 2017)
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Summary and Conclusions

@ Scaling DNNs for large vocabulary speech recognition

@ LSTM recurrent networks and TDNNs offer different ways to
model temporal context
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@ A Maas et al (2017). “Building DNN acoustic models for
large vocabulary speech recognition”, Computer Speech and
Language, 41:195-213.
https://arxiv.org/abs/1406.7806

e V Peddinti et al (2015). “A time delay neural network
architecture for efficient modeling of long temporal contexts”,
Interspeech.

https://www.isca-speech.org/archive/interspeech_
2015/i15_3214 .html
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network for speech recognition”, Proc. ICASSP
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