
Neural Networks for Acoustic Modelling 3:
DNN architectures

Peter Bell

Automatic Speech Recognition – ASR Lecture 12
2 March 2023

ASR Lecture 12 NNs for Acoustic Modelling 3: DNN architectures 1



Modelling acoustic context

DNNs allow the network to model acoustic context by
including neighbouring frame in the input layer – the output is
thus estimating the phone or state probability using that
contextual information

Richer NN models of acoustic context:
Time-delay neural networks (TDNNs)

each layer processes a context window from the previous layer
higher hidden layers have a wider receptive field into the input

Recurrent neural networks (RNNs)

hidden units at time t take input from their value at time t− 1
these recurrent connections allow the network to learn state

Both approaches try to learn invariances in time, and form
representations based on compressing the history of
observations

We’ll also mention CNNs and Transformers
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TDNNs – second hidden layer receptive field
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TDNNs – second hidden layer receptive field
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TDNNs – second hidden layer receptive field
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Example TDNN Architecture
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Input Features
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View a TDNN as a 1D
convolutional network
with the transforms for
each hidden unit tied
across time

TDNN layer with context
[-2,2] has 5x as many
weights as a regular DNN
layer

More computation, more
storage required!
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Example TDNN Architecture
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Fully connected layer
(TDNN Layer [0])

Input Features

Output HMM states

Hidden layer
~700 ReLU hidden units
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with the transforms for
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layer

More computation, more
storage required!

ASR Lecture 12 NNs for Acoustic Modelling 3: DNN architectures 5



Sub-sampled TDNN
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Sub sample window of
hidden unit activations

Large overlaps between
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likely to be correlated

Allow gaps between
frames in a window (cf.
dilated convolutions)

Sub-sampling saves
computation and reduces
number of model size
(number of weights)
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Example sub-sampled TDNN

tackle late reverberations, DNNs should be able to model tem-
poral relationships across wide acoustic contexts.

TDNNs [5], which are feed-forward neural networks, with
the ability to model long-term temporal relationships, were used
here. We used the sub-sampling technique proposed in [6] to
achieve an acceptable training time.

In Section 3 we describe the time delay neural network ar-
chitecture in greater detail.

3. Neural network architecture
In a TDNN architecture the initial transforms are learnt on nar-
row contexts and the deeper layers process the hidden activa-
tions from increasingly wider contexts. Hence the higher layers
have the ability to learn longer temporal relationships. However
the training time of a TDNN is substantially larger than that of
a DNN, when modeling long temporal contexts, despite the use
of speed-up techniques such as [19].

In [6] a sub-sampling technique was proposed to reduce the
number of hidden activations computed in the TDNN, while en-
suring that the information from all time steps in the input con-
text was used. Figure 1 shows time steps at which activations
are computed, at each layer, and the dependencies between ac-
tivations across layers, both in a conventional TDNN (blue+red
edges) and a sub-sampled TDNN (red edges), in order to com-
pute the network output at time t. The use of sub-sampling
speeds up the training by ⇠ 5x in the baseline TDNN architec-
ture shown in Figure 1.
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Figure 1: Computation in TDNN with sub-sampling (red) and
without sub-sampling (blue+red)

The hyper-parameters which define the sub-sampled TDNN
network structure are the set of frame offsets that we require
as an input to each layer. In the case pictured, these are
{�2,�1, 0, 1, 2}, {�1, 2}, {�3, 3} and {�7, 2}. In a conven-
tional TDNN, these input frame offsets would always be con-
tiguous. However, in our work we sub-sample these; in our
normal configuration, the frame splicing at the hidden layers
splices together just two frames, separated by a delay that in-
creases as we go to higher layers of the network [6].

In this paper we were able to operate on input contexts of up
to 280 ms without detriment in performance, using the TDNN.
Thus the TDNN has the capability to tackle corruptions due to
late reverberations.

Our TDNN uses the p-norm non-linearity [20]. We use a
group size of of 10, and the 2-norm.

3.1. Input Features

Mel-frequency cepstral coefficients (MFCCs) [21], without
cepstral truncation, were used as input to the neural network.
40 MFCCs were computed at each time index. MFCCs over a
wide asymmetric temporal context were provided to the neural
network. Different contexts were explored in this paper. 100
dimensional iVectors were also provided as an input to the net-
work, every time frame. Section 4 describes the iVector extrac-
tion process during training and decoding in greater detail.

3.2. Training recipe

The paper follows the training recipe detailed in [20]. It uses
greedy layer-wise supervised training, preconditioned stochas-
tic gradient descent (SGD) updates, an exponentially decreas-
ing learning rate schedule and mixing-up. Parallel training of
the DNNs using up to 18 GPUs was done using the model aver-
aging technique in [13].

3.2.1. Modified sMBR sequence training

Sequence training was done on the DNN, based on a state-level
variant of the Minimum Phone Error (MPE) criterion, called
sMBR [22] . The training recipe mostly follows [23], although
it has been modified for the parallel-training method. Training
is run in parallel using 12 GPUs, while periodically averaging
the parameters, just as in the cross-entropy training phase.

Our previous sMBR-based training recipe degraded results
on the ASpIRE setup, so we introduced a modification to the
recipe which we have since found to be useful more generally,
in other LVCSR tasks.

In the sMBR objective function, as for MPE, insertion er-
rors are not penalized. This can lead to larger number of inser-
tion errors when decoding with sMBR trained acoustic models.
Correcting this asymmetry in the sMBR objective function, by
penalizing insertions, was shown to improve the WER perfor-
mance of sMBR models by 10% relative. In standard sMBR
training [22, 24], the frame error is always set to zero if the
reference is silence, which means that insertions into silence
regions are not penalized. In other words, frames where the
reference alignment is silence are treated specially. (Note that
in our implementation several phones, including silence, vo-
calized noise and non-spoken noise, are treated as silence for
these purposes.) In our modified sMBR training method, we
treat silence as any other phone, except that all pdfs of silence
phones are collapsed into a single class for the frame-error com-
putation. This means that replacing one silence phone with an-
other silence phone is not penalized (e.g. replacing silence with
vocalized-noise is not penalized), but insertion of a non-silence
phone into a silence region is penalized. This is closer to the
WER metric that we actually care about, since WER is gener-
ally computed after filtering out noises, but does penalize in-
sertions. We call our modified criterion the “one-silence-class”
modification of sMBR.

4. iVector Extraction
In this section we describe the iVector estimation process
adopted during training and decoding. We discuss issues in es-
timating iVectors from noisy unsegmented speech recordings,
and in using these noisy estimates of iVectors as input to neural
networks.

On each frame we append a 100-dimensional iVector [25]
to the 40-dimensional MFCC input. The MFCC input is not

Peddinti (2015)

Sub-sampled
Layer Context Context

1 [-2,2] [-2,2]
2 [-1,2] {-1,2}
3 [-3,3] {-3,3}
4 [-7,2] {-7,2}
5 {0} {0}

Increase the context for higher layers of the network

Subsampled so that difference between sampled hidden units
is multiple of 3 to enable “clean” sub-sampling

Asymmetric contexts

MFCC features in this case
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Recurrent Networks
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Recurrent network

Hidden (t)

Output (t)

Input (t)

Hidden (t-1)

w(1)

w(2)

w(R)

Hidden (t+1)

Input (t-1)

Output (t-1)

Input (t+1)

Output (t+1)

w(2)w(2)

w(1)w(1)

w(R)
w(R) w(R)

View an RNN for a sequence of T inputs as a T -layer network
with shared weights

Train by doing backpropagation through this unfolded network

Recurrent hidden units are state units: can keep information
through time

State units as memory – remember things for (potentially) an
infinite time
State units as information compression – compress the history
(sequence observed up until now) into a state representation
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Simple recurrent network unitSimple recurrent network unit
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h(t) = tanh (g(t))
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h(t) = tanh (g(t))
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LSTM

Simple recurrent network unit
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Internal recurrent state
(“cell”) c(t) combines
previous state c(t − 1)
and LSTM input g(t)

Gates - weights dependent
on the current input and
the previous state

Input gate: controls how
much input to the unit
g(t) is written to the
internal state c(t)

Forget gate: controls
how much of the previous
internal state c(t − 1) is
written to the internal
state c(t)

Input and forget gates
together allow the
network to control what
information is stored
and overwritten at each
step
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LSTM – Internal recurrent state
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LSTM – Input Gate
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LSTM – Input and Forget Gate

LSTM – Forget Gate
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LSTM – Input, Forget and Output GatesLSTM – Output Gate

x(t)h(t-1)
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g(t)

+
+

+

+

x

x

x

I(t; x(t), h(t-1))

Output gate: controls how much
of each unit’s activation is output
by the hidden state – it allows the
LSTM cell to keep information that
is not relevant at the current time,
but may be relevant later
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Output gate: controls
how much of each unit’s
activation is output by the
hidden state – it allows
the LSTM cell to keep
information that is not
relevant at the current
time, but may be relevant
later
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LSTM
LSTM

x(t)h(t-1)

h(t)

+

h(t-1)

c(t-1) c(t)

I(t; x(t), h(t-1))

O(t; x(t), h(t-1))

F(t; x(t), h(t-1))

Whh Whx
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I (t) = � (W ixx(t) + W ihh(t � 1) + bi )

F (t) = � (W fxx(t) + W fhht � 1) + bf )

O(t) = � (W oxx(t) + W ohh(t � 1) + bo)

g(t) = W hxx(t) + W hhh(t � 1) + bh

c(t) = F (t) � c(t � 1) + I (t) � g(t)

h(t) = O(t) � tanh (c(t))

C Olah (2015), Understanding LSTMs,
http://colah.github.io/posts/

2015-08-Understanding-LSTMs/
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I (t) = σ (W ixx(t) + W ihh(t − 1) + bi )

F (t) = σ (W fxx(t) + W fhht − 1) + bf )

O(t) = σ (W oxx(t) + W ohh(t − 1) + bo)

g(t) = W hxx(t) + W hhh(t − 1) + bh

c(t) = F (t) ◦ c(t − 1) + I (t) ◦ g(t)

h(t) = O(t) ◦ tanh (c(t))

Aovids the vanishing gradient problem of conventional RNNs

C Olah (2015), Understanding LSTMs, http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/
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Bidirectional RNN

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt + Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt + Whiht�1 + Wcict�1 + bi) (3)
ft = � (Wxfxt + Whfht�1 + Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt + Whcht�1 + bc) (5)
ot = � (Wxoxt + Whoht�1 + Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h

xt + W�!
h
�!
h

�!
h t�1 + b�!

h

⌘
(8)

 �
h t = H

⇣
W

x
 �
h

xt + W �
h
 �
h

 �
h t+1 + b �

h

⌘
(9)

yt = W�!
h y

�!
h t + W �

h y

 �
h t + by (10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t + Whnhnhn
t�1 + bn

h

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhN yhN
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

274
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Deep RNN

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each yt defines a probability distribution over the
K possible states: that is, yk

t (the kth element of yt) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log yzt
t (13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)

@ŷk
t

= yk
t � �k,zt

(14)

where ŷt is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input
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Deep Bidirectional LSTM
Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each yt defines a probability distribution over the
K possible states: that is, yk

t (the kth element of yt) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log yzt
t (13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)

@ŷk
t

= yk
t � �k,zt

(14)

where ŷt is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input
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Example: Deep Bidirectional LSTM Acoustic Model
(Switchboard)

LSTM has 4-6 bidirectional layers with
1024 cells/layer (512 each direction)

256 unit linear bottleneck layer

32k context-dependent state outputs

Input features

40-dimension linearly transformed
MFCCs (plus ivector)
64-dimension log mel filter bank
features
(plus first and second derivatives)
concatenation of of MFCC and FBANK
features

Training: 14 passes frame-level
cross-entropy training, 1 pass sequence
training (2 weeks on a K80 GPU)

32,000 CD states
Softmax

256 Linear

1024 Bi-LSTM

1024 Bi-LSTM

1024 Bi-LSTM

1024 Bi-LSTM

Acoustic Features
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Switchboard Results

Test Set WER/%
Network Architecture Switchboard CallHome

GMM (ML) 21.2 36.4
GMM (BMMI) 18.6 33.0
DNN (7x2048) / CE 14.2 25.7
DNN (7x2048) / MMI 12.9 24.6
TDNN (6x1024) / CE 12.5
TDNN (6x576) / LF-MMI 9.2 17.3
LSTM (4x1024) 8.0 14.3
LSTM (6x1024) 7.7 14.0
LSTM-6 + feat fusion 7.2 12.7

GMM and DNN results – Vesely et al (2013); TDNN-CE results –

Peddinti et al (2015); TDNN/LF-MMI results – Povey et al (2016);

LSTM results – Saon et al (2017)

Combining models, and with multiple RNN language models, WER
reduced to 5.5/10.3% (Saon et al, 2017)
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Summary and Conclusions

Scaling DNNs for large vocabulary speech recognition

LSTM recurrent networks and TDNNs offer different ways to
model temporal context
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