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Simple neural network for phone classification

1 hidden layer

~1000 hidden units

~61 phone classes

9x39 MFCC inputs

… …

P(phone | x)
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Neural networks for phone recognition

So far we have trained networks to classify each frame of
observations

In phone recognition, we need to obtain the best phone (or
word) sequence

Hybrid NN/HMM systems: in an HMM, replace the GMMs
used to estimate output pdfs with the outputs of neural
networks

Train a neural network to associate a phone-state label with a
frame of acoustic data (+ context)

Can interpret the output of the network as P(phone-state |
acoustic-frame)

Use NN to obtain output probabilities in Viterbi algorithm to
find most probable sequence of phones
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Neural networks and posterior probabilities

Posterior probability estimation

Consider a neural network trained as a classifier – each output
corresponds to a class.

When applying a trained network to test data, it can be
shown that the value of output corresponding to class j given
an input xt , is an estimate of the posterior probability
P(qt = j |xt). (This is because we have softmax outputs and
use a cross-entropy loss function)

Using Bayes Rule we can relate the posterior P(qt = j |xt) to
the likelihood p(xt |qt = j) used as an output probability in an
HMM:

P(qt |xt) =
p(xt |qt = j)P(qt = j)

p(xt)
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Scaled likelihoods

If we would like to use NN outputs as output probabilities in
an HMM, then we would like probabilities (or densities) of the
form p(x|q) – likelihoods.
We can write scaled likelihoods as:

P(qt = j |xt)
p(qt = j)

=
p(xt |qt = j)

p(xt)

Scaled likelihoods can be obtained by “dividing by the priors”
– divide each network output P(qt = j |xt) by P(qt), the
relative frequency of class j in the training data

Using p(xt |qt = j)/p(xt) rather than p(xt |qt = j) is OK since
p(xt) does not depend on the class j

Computing the scaled likelihoods can be interpreted as
factoring out the prior estimates for each phone based on the
acoustic training data. The HMM can then integrate better
prior estimates based on the language model and lexicon
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Hybrid NN/HMM

"No right"

NO RIGHT

ohn r ai t

… …

183 outputs
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Modelling phonetic context (1)

NNs can naturally model acoustic context, but how can we
model phonetic context?

Early solution (Bourlard et al, 1992) – separate the modelling
of the primary class, y , and its context, c , with two neural
networks:

p(y , c |x) = p(c |y , x)p(y |x)

or
p(y , c |x) = p(y |c , x)p(c |x)

During decoding, we need separate forward passes for each
context
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Using context as input for p(y |c , x)
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Context-dependent decoding
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Modellig phonetic context (2)

Tandem scheme:

Basic idea: use the output probabilities from the NN as input
features to standard CD-HMM-GMM system

Combines the benefits of both:

NNs good at modelling wide acoustic contexts, correlated
input features
HMM-GMMs good for speaker adaptation, modelling phonetic
context, sequence-training

NN output probabilities are Gaussianised by taking logs and
decorrelating with PCA

Early variants used purely NN features; later variants
augmented the feature vector with standard acoustic features

Can also use “bottleneck features” (narrow, intermediate NN
layers)
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Tandem scheme

qt

xt
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Tandem scheme
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Tandem scheme

qt

xt
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Monophone HMM/NN hybrid system (1993)
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Monophone HMM/NN hybrid system (1998)

Utterance
Hypothesis

Speech

CI RNN
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CD RNN

Decoder
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Broadcast news transcription (1998) – 20.8% WER

(best GMM-based system, 13.5%)

Cook et al, DARPA, 1999
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HMM/NN vs HMM/GMM

Advantages of NN:
Can easily model correlated features

Correlated feature vector components (eg spectral features)
Input context – multiple frames of data at input

More flexible than GMMs – not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries

Disadvantages of NNs in the 1990s:

Context-independent (monophone) models, weak speaker
adaptation algorithms
NN systems less complex than GMMs (fewer parameters):
RNN – < 100k parameters, MLP – ∼ 1M parameters
Computationally expensive - more difficult to parallelise
training than GMM systems
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State of the art in the year 2000
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Features of the Cambridge system

CU-HTK 2000

Base model HMM-GMM
Acoustic context ∆, ∆∆ features, HLDA projection
Phonetic context Tied state triphones & quinphones
Speaker adaptation Gender-dependent models, VTLN, MLLR
Training criterion ML + MMI sequence training
System architecture 6-pass system
Other features Multi-system combination

Hub 2000 WER 19.3%

No neural networks!
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Ten years later
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Features of the Microsoft NN system

Microsoft 2011

Base model HMM-DNN
Acoustic context 11 frames directly modelled
Phonetic context Tied state triphones
Speaker adaptation None
Training criteria Frame-level cross-entropy
System architecture Single pass
Other features Deep network architecture

Hub 2000 WER 16.1%
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The rise of deep neural networks

3-8 hidden layers

~2000 hidden units

3x61 = 183 state outputs

~2000 hidden units

9x39 MFCC inputs

Deeper: Deep neural network
architecture – multiple hidden
layers

Wider: Use HMM state
alignment as outputs rather than
hand-labelled phones – 3-state
HMMs, so 3×61 states

Used a pretraining scheme to
improve training accuracy of
models with many hidden layers

Training many hidden layers is
computationally expensive –
GPUs used to provide the
computational power
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Acoustic features for NN acoustic models

GMMs: filter bank features (spectral domain) not used as they
are strongly correlated with each other – would either require

full covariance matrix Gaussians
many diagonal covariance Gaussians

DNNs do not require the components of the feature vector to
be uncorrelated

Can directly use multiple frames of input context (this has
been done in NN/HMM systems since 1990, and is crucial to
make them work well)
Can potentially use feature vectors with correlated components
(e.g. filter banks)

Mel-scaled filter bank features (FBANK) found to result in
greater accuracy than standard MFCCs, though higher
resolution MFCCs are now used
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TIMIT phone error rates: effect of depth and feature type

continuous features. A very important feature of neural networks
is their ”distributed representation” of the input, i.e., many neurons
are active simultaneously to represent each input vector. This makes
neural networks exponentially more compact than GMMs. Suppose,
for example, that N significantly different patterns can occur in one
sub-band andM significantly different patterns can occur in another.
Suppose also the patterns occur in each sub-band roughly indepen-
dently. A GMM model requires NM components to model this
structure because each component of the mixture must generate both
sub-bands; each piece of data has only a single latent cause. On the
other hand, a model that explains the data using multiple causes only
requiresN+M components, each of which is specific to a particular
sub-band. This property allows neural networks to model a diversity
of speaking styles and background conditions with much less train-
ing data because each neural network parameter is constrained by a
much larger fraction of the training data than a GMM parameter.

3.2. The advantage of being deep

The second key idea of DBNs is “being deep.” Deep acoustic mod-
els are important because the low level, local, characteristics are
taken care of using the lower layers while higher-order and highly
non-linear statistical structure in the input is modeled by the higher
layers. This fits with human speech recognition which appears to
use many layers of feature extractors and event detectors [7]. The
state-of-the-art ASR systems use a sequence of feature transforma-
tions (e.g., LDA, STC, fMLLR, fBMMI), cross model adaptation,
and lattice-rescoring which could be seen as carefully hand-designed
deep models. Table 1 compares the PERs of a shallow network with
one hidden layer of 2048 units modelling 11 frames of MFCCs to a
deep network with four hidden layers each containing 512 units. The
comparison shows that, for a fixed number of trainable parameters,
a deep model is clearly better than a shallow one.

Table 1. The PER of a shallow and a deep network.

Model 1 layer of 2048 4 layers of 512
dev 23% 21.9%
core 24.5% 23.6%

3.3. The advantage of generative pre-training

One of the major motivations for generative training is the belief
that the discriminations we want to perform are more directly related
to the underlying causes of the acoustic data than to the individual
elements of the data itself. Assuming that representations that are
good for modeling p(data) are likely to use latent variables that are
more closely related to the true underlying causes of the data, these
representations should also be good for modeling p(label|data).
DBNs initialize their weights generatively by layerwise training of
each hidden layer to maximize the likelihood of the input from the
layer below. Exact maximum likelihood learning is infeasible in net-
works with large hidden layers because it is exponentially expen-
sive to compute the derivative of the log probability of the training
data. Nevertheless, each layer can be trained efficiently using an
approximate training procedure called “contrastive divergence” [8].
Training a DBN without the generative pre-training step to model 15
frames of fbank coefficients caused the PER to jump by about 1%
as shown in figure(1). We can think of the generative pre-training
phase as a strong regularizer that keeps the final parameters close to
a good generative model. We can also think of the pre-training as

an optimization trick that initializes the parameters near a good local
maximum of p(label|data).
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Fig. 1. PER as a function of the number of layers.

4. WHICH FEATURES TO USE WITH DBNS

State-of-the-art ASR systems do not use fbank coefficients as the in-
put representation because they are strongly correlated so modeling
themwell requires either full covariance Gaussians or a huge number
of diagonal Gaussians which is computationally expensive at decod-
ing time. MFCCs offer a more suitable alternative as their individual
components tend to be independent so they are much easier to model
using a mixture of diagonal covariance Gaussians. DBNs do not
require uncorrelated data so we compared the PER of the best per-
forming DBNs trained with MFCCs (using 17 frames as input and
3072 hidden units per layer) and the best performing DBNs trained
with fbank features (using 15 frames as input and 2048 hidden units
per layer) as in figure 2. The performance of fbank features is about
1.7% better than MFCCs which might be wrongly attributed to the
fact that fbank features have more dimensions than MFCCs. Dimen-
sionality of the input is not the crucial property (see p. 3).
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Fig. 2. PER as a function of the number of layers.
To understand this result we need to visualize the input vectors

(i.e. a complete window of say 15 frames) as well as the learned hid-
den activity vectors in each layer for the two systems (DBNs with
8 hidden layers plus a softmax output layer were used for both sys-
tems). A recently introduced visualization method called “t-SNE”
[9] was used for producing 2-D embeddings of the input vectors
or the hidden activity vectors. t-SNE produces 2-D embeddings
in which points that are close in the high-dimensional vector space

(Mohamed et al (2012))
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Context-dependent units
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Tied context-dependent units
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Modelling phonetic context (3)

In the 1990s, this was considered hard (see earlier slides)

But in 2011, a simple solution emerged: use state-tying from
a GMM system
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Context-dependent hybrid HMM/DNN

First train a context-dependent HMM/GMM system on the
same data, using a phonetic decision tree to determine the
HMM tied states

Perform Viterbi alignment using the trained HMM/GMM and
the training data

Train a neural network to map the input speech features to a
label representing a context-dependent tied HMM state

So the size of the label set is thousands (number of
context-dependent tied states) rather than tens (number of
context-independent phones) Each frame is labelled with the
Viterbi aligned tied state

Train the neural network using gradient descent as usual

Use the context-dependent scaled likelihoods obtained from
the neural network when decoding
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Example: HMM/DNN acoustic model for Switchboard

7 hidden layers

2048 hidden units

9304 CD state outputs

2048 hidden units

9x39 = 351 PLP inputs

(Siede et al (2011))
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Example: HMM/DNN acoustic model for Switchboard

Alignments generated from context-dependent HMM/GMM
system

Hybrid HMM/DNN system

Context-dependent — 9304 output units obtained from Viterbi
alignment of HMM/GMM system
7 hidden layers, 2048 units per layer
11 frames of acoustic context

DNN-based system results in significant word error rate
reduction compared with GMM-based system
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Summary

DNN/HMM systems (hybrid systems) gave a significant
improvement over GMM/HMM systems
Compared with 1990s NN/HMM systems, DNN/HMM
systems

model context-dependent tied states with a much wider output
layer
are deeper – more hidden layers
can use correlated features (e.g. FBANK) or higher resolution
MFCCs

Background reading:
N Morgan and H Bourlard (May 1995). “Continuous speech
recognition: Introduction to the hybrid HMM/connectionist
approach”, IEEE Signal Processing Mag., 12(3), 24–42.
http://ieeexplore.ieee.org/document/382443

A Mohamed et al (2012). “Understanding how deep belief
networks perform acoustic modelling”, Proc ICASSP-2012.
http://www.cs.toronto.edu/~asamir/papers/icassp12_

dbn.pdf
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