Neural Network Acoustic Models 1: Introduction

Peter Bell

Automatic Speech Recognition – ASR Lecture 10 16 February 2023

Local phonetic scores and sequence modelling

- Compute state observation scores (acoustic-frame, phone-model) – this does the detailed matching at the frame-level
- Chain observation scores together in a sequence HMM

Phonetic scores

Task: given an input acoustic frame, output a score for each phone

Phone state scores

Output a score for each phone state

Phonetic scores

Compute the phonetic scores using a single layer neural network (linear regression!)

Phonetic scores

Compute the phonetic scores using a single layer neural network

- Write the estimated phonetic scores as a vector $\mathbf{f} = (f_1, f_2, \dots, f_J)$
- Then if the acoustic frame at time t is $\mathbf{x}_t = (x_1, x_2, \dots, x_D)$:

$$f_j = w_{j1}x_1 + w_{j2}x_2 + \ldots + w_{jD}x_D + b_j = \sum_{d=1}^{D} w_{jd}x_d + b_j$$

 $f = Wx + b$

where we call **W** the weight matrix, and **b** the bias vector.

Check your understanding:
 What are the dimensions of W and b?

Error function

How do we learn the parameters \boldsymbol{W} and \boldsymbol{b} ?

- Minimise an Error Function: Define a function which is 0 when the output $f(x_t)$ equals the target output r(t) for all t
- Target output: for phone classification the target output corresponds to the phone label for each frame
- Mean square error: define the error function E as the mean square difference between output and the target:

$$E = \frac{1}{2} \cdot \frac{1}{T} \sum_{t=1}^{T} ||\boldsymbol{f}(\boldsymbol{x}_t) - \boldsymbol{r}(t)||^2$$

where there are T frames of training data in total

Notes on the error function

- f is a function of the acoustic data x and the weights and biases of the network (W and b)
- This means that as well as depending on the training data (x and r), E is also a function of the weights and biases, since it is a function of f
- We want to minimise the error function given a fixed training set: we must set W and b to minimise E
- Weight space: given the training set we can imagine a space where every possible value of W and b results in a specific value of E. We want to find the minimum of E in this weight space.
- Gradient descent: find the minimum iteratively given a current point in weight space find the direction of steepest descent, and change W and b to move in that direction

Gradient Descent

- Iterative update after seeing some training data, adjust the weights and biases to reduce the error. Repeat.
- To update a parameter so as to reduce the error, move downhill in the direction of steepest descent. Thus to train a network compute the gradient of the error with respect to the weights and biases:

$$\frac{\partial E}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial E}{\partial w_{10}} & \cdot & \frac{\partial E}{\partial w_{1d}} & \cdot & \frac{\partial E}{\partial w_{1D}} \\ & \cdot & \cdot & \cdot \\ \frac{\partial E}{\partial w_{j0}} & \cdot & \frac{\partial E}{\partial w_{jd}} & \cdot & \frac{\partial E}{\partial w_{jD}} \\ & \cdot & \cdot & \cdot \\ \frac{\partial E}{\partial w_{J0}} & \cdot & \frac{\partial E}{\partial w_{Jd}} & \cdot & \frac{\partial E}{\partial w_{JD}} \end{pmatrix}$$

$$\frac{\partial E}{\partial \boldsymbol{b}} = \left(\begin{array}{ccc} \frac{\partial E}{\partial b_1} & \cdot & \frac{\partial E}{\partial b_j} & \cdot & \frac{\partial E}{\partial b_J} \end{array}\right)$$

Stochastic Gradient Descent Procedure

- Initialise weights and biases with small random numbers
- Randomise the order of training data examples
- For each epoch (complete batch of training data)
 - Take a minibatch of training examples (eg 128 examples), and for all examples
 - ullet Forward: compute the network outputs $oldsymbol{f}$
 - Backprop: compute the gradients and accumulate $\partial E/\partial {\it w}$ for the minibatch
 - Update the weights and biases using the accumulated gradients and the learning rate hyperparameter η : $\mathbf{w} = \mathbf{w} \eta \partial E / \partial \mathbf{w}$

Terminate either after a fixed number of epochs, or when the error stops decreasing by more than a threshold.

Gradient in SLN

How do we compute the gradients $\frac{\partial E^t}{\partial w_{jd}}$ and $\frac{\partial E^t}{\partial b_j}$?

$$E^{t} = \frac{1}{2} \sum_{j=1}^{K} (f_j^{t} - r_j^{t})^2 = \frac{1}{2} \sum_{j=1}^{J} \left(\sum_{d=1}^{D} (w_{jd} x_d^{t} + b_j) - r_j^{t} \right)^2$$

$$\frac{\partial E^{t}}{\partial w_{ji}} = (f_j^{t} - r_j^{t}) x_i^{t} = g_j^{t} x_i^{t}$$

$$g_j^{t} = f_j^{t} - r_j^{t}$$

Update rule: Update a weight w_{jd} using the gradient of the error with respect to that weight: the product of the difference between the actual and target outputs for an example $(f_j^t - r_j^t)$ and the value of the unit at the input to the weight (x_d) .

Check your understanding: Show that the gradient for the bias is

$$\frac{\partial E^t}{\partial b_i} = g_j^t$$

Applying gradient descent to a single-layer network

Softmax

- Our network that predicts phonetic scores is a *classifier* at training time each frame of data has a correct label (target output of 1), other labels have a target output of 0
- At test time the network produces real-valued outputs which we can interpret as the probability of the *j*th label given the input frame \mathbf{x}_t , $P(q_t = i | \mathbf{x}_t)$
- We can design an output layer which forces the output values to act like probabilities
 - Each output will be between 0 and 1
 - The K outputs will sum to 1
- A way to do this is using the *Softmax* activation function:

$$y_j = \frac{\exp(a_j)}{\sum_{k=1}^K \exp(a_k)}$$
 $a_j = \sum_{d=1}^D w_{jd} x_d + b_j$

$$a_j = \sum_{d=1}^D w_{jd} x_d + b_j$$

Cross-entropy error function

- Since we are interpreting the network outputs as probabilities, we can write an error function for the network which aims to maximise the log probability of the correct label.
- If r_j^t is the 1/0 target of the the jth label for the tth frame, and y_j^t is the network output, then the cross-entropy (CE) error function is:

$$E^t = -\sum_{j=1}^J r_j^t \ln y_j^t$$

 Note that if the targets are 1/0 then the only the term corresponding to the correct label is non-zero in this summation.

Cross entropy and softmax

 A neat thing about softmax: if we train with cross-entropy error function, we get a simple form for the gradients of the output weights:

$$\left(\frac{\partial E^t}{\partial w_{jd}}\right) = \left(y_j^t - r_j^t\right) x_d^t$$

- In statistics this is called logistic regression
- Check your understanding:
 - Why does the cross-entropy error function correspond to maximising the log probability of the correct label?
 - Why does the softmax output function ensure the set of outputs for a frame sums to 1?
 - Why are the target labels either 1 or 0? Why does only one target label per frame take the value 1?
 - Why are the network outputs real numbers and not binary (1/0)?

Extending the model: Acoustic context

Use multiple frames of acoustic context

16

Extending the model: Hidden layers

- Single layer networks have limited computational power each output unit is trained to match a spectrogram directly (a kind of discriminative template matching)
- But there is a lot of variation in speech (as previously discussed) – rate, coarticulation, speaker characteristics, acoustic environment
- Introduce an intermediate feature representation layers of "hidden units" – more robust than template matching
- Can have multiple hidden layers to learn successively more abstract representations – deep neural networks (DNNs)

Hidden Units

$$h_k = \sigma \left(\sum_{d=1}^{D} v_{kd} x_d + b_k \right)$$
 $y_j = \operatorname{softmax} \left(\sum_{k=1}^{K} w_{jk} h_k + b_j \right)$

Neural Network Acoustic Models 1: Introduction

18

Sigmoid function

$$\sigma'(x) = \frac{d}{dx}\sigma(x) = \frac{e^{-x}}{(1 + e^{-x})^2} = \sigma(x)(1 - \sigma(x))$$

Rectified Linear Unit - ReLU

$$\mathsf{relu}(x) = \mathsf{max}(0, x)$$

Derivative:
$$\operatorname{relu}'(x) = \frac{d}{dx}\operatorname{relu}(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Training deep networks: Backprop and gradient descent

- Hidden units make training the weights more complicated, since each hidden units affects the error function indirectly via all the output units
- The credit assignment problem: what is the "error" of a hidden unit? how important is input-hidden weight v_{kd} to output unit j?
- Solution: back-propagate the gradients through the network –
 the gradient for a hidden unit output with respect to the error
 can be computed as the weighted sum of the deltas of the
 connected output units. (Propagate the g values backwards
 through the network)
- The back-propagation of error (backprop) algorithm thus provides way to propagate the error graidents through a deep network to allow gradient descent training to be performed

Training DNNs using backprop

Multiple hidden layers

Simple neural network for phone classification

24

Interim conclusions

- Neural networks using cross-entropy (CE) and softmax outputs give us a way of assigning the probability of each possible phonetic label for a given frame of data
- Hidden layers provide a way for the system to learn representations of the input data
- All the weights and biases of a network may be trained by gradient descent – back-propagation of error provides a way to compute the gradients in a deep network
- Acoustic context can be simply incorporated into such a network by providing multiples frame of acoustic input
- Introductory reading for neural networks:
 - Nielsen, Neural Networks and Deep Learning, (chapters 1, 2, 3)
 http://neuralnetworksanddeeplearning.com
 - Jurafsky and Martin (draft 3rd edition), chapter 7 (secs 7.1 7.4)
 https://web.stanford.edu/~jurafsky/slp3/7.pdf

Next Lecture

- \bullet From frames to sequences to word level transcription hybrid HMM/DNN
- Modelling context dependence with neural network acoustic models
- Hybrid HMM/DNN systems in practice