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Local phonetic scores and sequence modelling
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e Compute state observation scores (acoustic-frame,
phone-model) — this does the detailed matching at the
frame-level

@ Chain observation scores together in a sequence — HMM
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Phonetic scores

Task: given an input acoustic frame, output a score for each phone
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Phone state scores

Output a score for each phone state
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Phonetic scores

Compute the phonetic scores using a single layer neural network
(linear regression!)

Each output computes its score
as a weighted sum of the current inputs
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Phonetic scores

Compute the phonetic scores using a single layer neural network

@ Write the estimated phonetic scores as a vector
f=(f,f,...,f))

@ Then if the acoustic frame at time t is x; = (x1,%2,...,Xxp):
D
fi = lexl—i—ngxz—i—...—l—WJ-DXD—i—bj:ZWjdXd—I—bj
d=1
f=Wx+b

where we call W the weight matrix, and b the bias vector.

o Check your understanding:
What are the dimensions of W and b?
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Error function

How do we learn the parameters W and b?
@ Minimise an Error Function: Define a function which is 0
when the output f(x;) equals the target output r(t) for all t
@ Target output: for phone classification the target output
corresponds to the phone label for each frame
@ Mean square error: define the error function E as the mean
square difference between output and the target:

F(xe) = r(t)|]”

||M~|

where there are T frames of training data in total
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Notes on the error function

o f is a function of the acoustic data x and the weights and
biases of the network (W and b)

@ This means that as well as depending on the training data (x
and r), E is also a function of the weights and biases, since it
is a function of f

@ We want to minimise the error function given a fixed training
set: we must set W and b to minimise E

@ Weight space: given the training set we can imagine a space
where every possible value of W and b results in a specific
value of E. We want to find the minimum of E in this weight
space.

o Gradient descent: find the minimum iteratively — given a
current point in weight space find the direction of steepest
descent, and change W and b to move in that direction
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Gradient Descent

@ lterative update — after seeing some training data, adjust the
weights and biases to reduce the error. Repeat.

@ To update a parameter so as to reduce the error, move
downhill in the direction of steepest descent. Thus to train a
network compute the gradient of the error with respect to the
weights and biases:
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Stochastic Gradient Descent Procedure

© Initialise weights and biases with small random numbers

© Randomise the order of training data examples

© For each epoch (complete batch of training data)
o Take a minibatch of training examples (eg 128 examples), and
for all examples
e Forward: compute the network outputs f
o Backprop: compute the gradients and accumulate 9E /Ow for
the minibatch
o Update the weights and biases using the accumulated
gradients and the learning rate hyperparameter 7:
w=w —ndE/ow
Terminate either after a fixed number of epochs, or when the error
stops decreasing by more than a threshold.
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Gradient in SLN

How do we compute the gradlents and 8Et
1 1 D ’
Et:zZ(ﬁ-frf)z:QZ(Z wjgxg + by) — )
j=1 j=1 \d=

OE?!
— (=it =(gxt] (g =1 1]

ow;i

Update rule: Update a weight wjq using the gradient of the error
with respect to that weight: the product of the difference between
the actual and target outputs for an example (£ — rf) and the
value of the unit at the input to the weight (xy).
Check your understanding: Show that the gradient for the bias is
OE*
ob; &
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Applying gradient descent to a single-layer network




@ Our network that predicts phonetic scores is a classifier — at
training time each frame of data has a correct label (target
output of 1), other labels have a target output of 0

@ At test time the the network produces real-valued outputs
which we can interpret as the probability of the jth label given
the input frame x¢, P(q: = j|x¢)

@ We can design an output layer which forces the output values
to act like probabilities

e Each output will be between 0 and 1
e The K outputs will sum to 1

@ A way to do this is using the Softmax activation function:
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Cross-entropy error function

@ Since we are interpreting the network outputs as probabilities,
we can write an error function for the network which aims to
maximise the log probability of the correct label.

o If rjt is the 1/0 target of the the jth label for the tth frame,
and y/ is the network output, then the cross-entropy (CE)
error function is:

J
f—_E t t
E* = rJInyJ
j=1

@ Note that if the targets are 1/0 then the only the term
corresponding to the correct label is non-zero in this
summation.
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Cross entropy and softmax

@ A neat thing about softmax: if we train with cross-entropy
error function, we get a simple form for the gradients of the
output weights:

oY
Owjq *(YJ‘ _rj)Xd

@ In statistics this is called logistic regression

o Check your understanding:

Why does the cross-entropy error function correspond to
maximising the log probability of the correct label?

Why does the softmax output function ensure the set of
outputs for a frame sums to 17

Why are the target labels either 1 or 0?7 Why does only one
target label per frame take the value 17

Why are the network outputs real numbers and not binary

(1/0)7
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Extending the model: Acoustic context

Use multiple frames of acoustic context
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Extending the model: Hidden layers

@ Single layer networks have limited computational power —
each output unit is trained to match a spectrogram directly (a
kind of discriminative template matching)

@ But there is a lot of variation in speech (as previously
discussed) — rate, coarticulation, speaker characteristics,
acoustic environment

@ Introduce an intermediate feature representation — layers of
“hidden units” — more robust than template matching

@ Can have multiple hidden layers to learn successively more
abstract representations — deep neural networks (DNNs)
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Hidden Units
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Sigmoid function

Derivative:

1
o(x) = 14+ e X
d e ™
/ = — pry
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Rectified Linear Unit — ReLU

relu(x) = max(0, x)

0 ifx<o

Derivative: relu’(x) = dix relu(x) = {1 o )
if x >

ASR Lecture 10 20



Training deep networks: Backprop and gradient descent

@ Hidden units make training the weights more complicated,
since each hidden units affects the error function indirectly via
all the output units

@ The credit assignment problem: what is the “error” of a
hidden unit? how important is input-hidden weight v,y to
output unit j7

@ Solution: back-propagate the gradients through the network —
the gradient for a hidden unit output with respect to the error
can be computed as the weighted sum of the deltas of the
connected output units. (Propagate the g values backwards
through the network)

e The back-propagation of error (backprop) algorithm thus
provides way to propagate the error graidents through a deep
network to allow gradient descent training to be performed
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Training DNNs using backprop

o) = (X oyt relu

aE (1)

Ld

ASR Lecture 10 22

Vkd




Multiple hidden layers
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Simple neural network for phone classification
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Interim conclusions

@ Neural networks using cross-entropy (CE) and softmax
outputs give us a way of assigning the probability of each
possible phonetic label for a given frame of data

e Hidden layers provide a way for the system to learn
representations of the input data

@ All the weights and biases of a network may be trained by
gradient descent — back-propagation of error provides a way to
compute the gradients in a deep network

@ Acoustic context can be simply incorporated into such a
network by providing multiples frame of acoustic input

@ Introductory reading for neural networks:

o Nielsen, Neural Networks and Deep Learning, (chapters 1, 2, 3)
http://neuralnetworksanddeeplearning.com

o Jurafsky and Martin (draft 3rd edition), chapter 7 (secs 7.1 — 7.4)
https://web.stanford.edu/~jurafsky/slp3/7.pdf
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http://neuralnetworksanddeeplearning.com
https://web.stanford.edu/~jurafsky/slp3/7.pdf

Next Lecture

@ From frames to sequences to word level transcription — hybrid
HMM/DNN

@ Modelling context dependence with neural network acoustic
models

e Hybrid HMM/DNN systems in practice
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