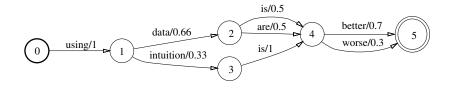
WFSTs for ASR

Peter Bell


Automatic Speech Recognition – ASR Lecture 9 13 February 2023

크

-≣->

- Weighted finite state automaton that transduces an input sequence to an output sequence (Mohri et al 2008)
- States connected by transitions. Each transition has
 - input label
 - output label
 - weight
- Weights use the *log semi-ring* or *tropical semi-ring* with operations that correspond to multiplication and addition of probabilities
- There is a single start state. Any state can optionally be a final state (with a weight)
- Used by Kaldi

Weighted Finite State Acceptors

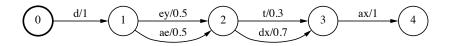
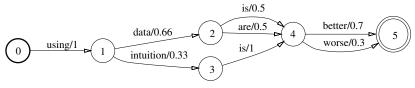
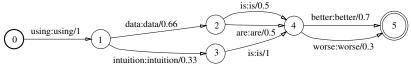



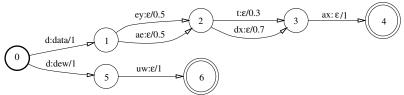
Image: A mathematical states and a mathem


문 🛌 문

Weighted Finite State Transducers

Acceptor

Transducer


< ∃⇒

크

Weighted Finite State Transducers

Transducer

æ

A (1) > A (2)

FST Weights

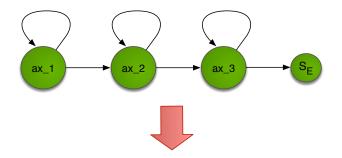
- Formally, WFST weights must be members of a semiring
- This defines special operations for mutiplication ("Times", $\otimes)$ and addition ("Plus", $\oplus)$
- You can think of the weights as negative log-probabilities, so that:

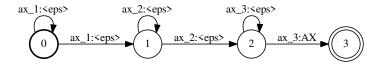
$$w_1 \otimes w_2 = w_1 + w_2$$

 $w_1 \oplus w_2 = -\log(e^{-w_1} + e^{-w_2})$

corresponding to the normal multiplication/addition operations in the probability domain. This is the *log semiring*

• You may also encounter the *tropical semiring* (the default in OpenFst), which is the same as above, except


$$w_1 \oplus w_2 = \min(w_1, w_2)$$


which can be interpreted as taking the best of two probabilities, rather than summing them. Composition Combine transducers T_1 and T_2 into a single transducer acting as if the output of T_1 was passed into T_2 .

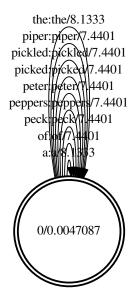
Determinisation Ensure that each state has no more than a single output transition for a given input label

Minimisation Transforms a transducer to an equivalent transducer with the fewest possible states and transitions Weight pushing Push the weights towards the front of the path

The HMM as a WFST

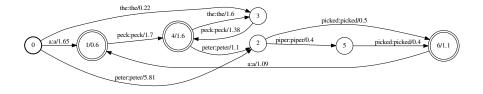
æ

イロト イヨト イヨト イヨト

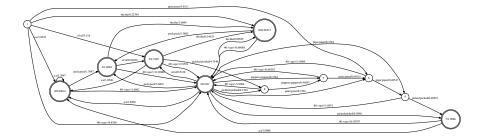

Applying WFSTs to speech recognition

• Represent the following components as WFSTs

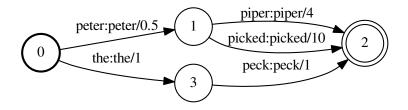
	transducer	input sequence	output sequence
G	word-level grammar	words	words
L	pronunciation lexicon	phones	words
С	context-dependency	CD phones	phones
Н	HMM	HMM states	CD phones


- Composing *L* and *G* results in a transducer *L* \circ *G* that maps a phone sequence to a word sequence
- $H \circ C \circ L \circ G$ results in a transducer that maps from HMM states to a word sequence

Grammar - unigram

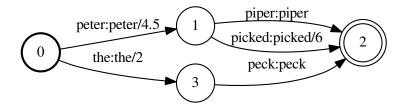

æ

・ロト ・四ト ・ヨト ・ヨト

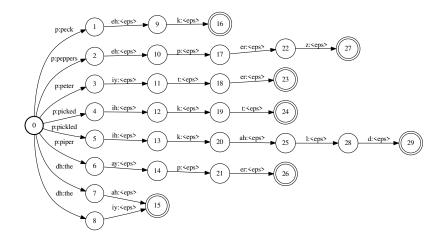


æ

Bigram with back-off



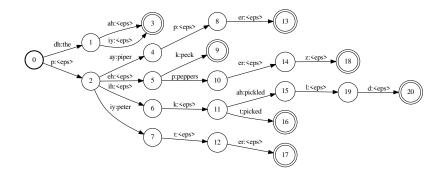
・ロト ・御 ト ・ ヨト ・ ヨト … ヨ


æ

・ロト ・日ト ・ヨト ・ヨト

・ロト ・日下・ ・ ヨト

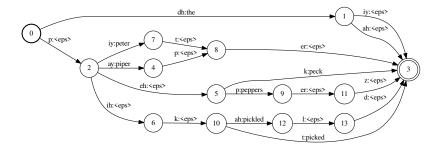
문 🛌 문



For clarity, this figure omits loops back to the start state

・ロト ・日下・ ・ ヨト

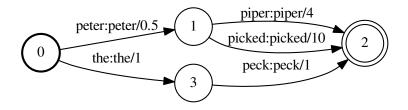
< ∃⇒


Determinization - det(L)

For clarity, this figure omits loops back to the start state

Image: A math a math

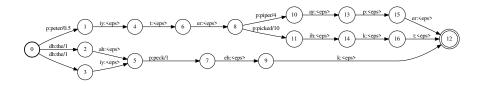
Minimization -min(det(L))



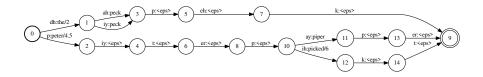
For clarity, this figure omits loops back to the start state

・ロト ・回ト ・ヨト

< ∃⇒

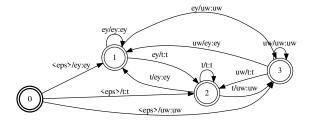

æ

æ


・ロト ・回ト ・ヨト ・ヨト

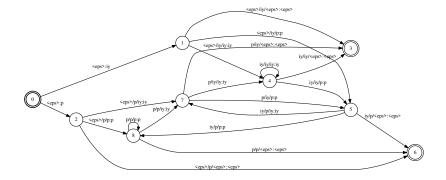
Composition: $L \circ G$

æ


・ロト ・回ト ・ヨト ・ヨト

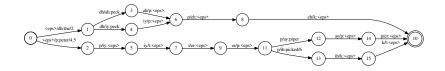
æ

ヘロト ヘロト ヘヨト ヘヨト


Context-dependency: left biphones

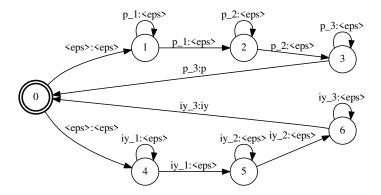
æ

・ロト ・日ト ・ヨト ・ヨト


Context-dependency: triphones

E

ヘロア 人間 アメヨア 人間 アー


$C \circ L \circ G$ – biphones

E

イロン イヨン イヨン イヨン

HMM transducer, H

- We can also use a version that outputs context-dependent phones
- *H* can be used to encode state-tying

A B A B A B A

∢ ≣ ≯

- Combining the transducers gives an overall HMM structure for the ASR system – but minimisation and determination operations on the WFSTs means it is much smaller than naively combining the HMMs
- But it is important in which order the algorithms are combined otherwise the transducers may "blow-up"
- standard approach is to determinize and minimize after each composition
- In Kaldi, ignoring one or two details

 $HCLG = \min(\det(H \circ \min(\det(C \circ \min(\det(L \circ G)))))))$

- Mohri et al (2008). "Speech recognition with weighted finite-state transducers." In Springer Handbook of Speech Processing, pp. 559-584. Springer. http://www.cs.nyu.edu/~mohri/pub/hbka.pdf
- WFSTs in Kaldi. http://danielpovey.com/files/Lecture4.pdf