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Weighted Finite State Transducers

Weighted finite state automaton that transduces an input
sequence to an output sequence (Mohri et al 2008)

States connected by transitions. Each transition has

input label
output label
weight

Weights use the log semi-ring or tropical semi-ring – with
operations that correspond to multiplication and addition of
probabilities

There is a single start state. Any state can optionally be a
final state (with a weight)

Used by Kaldi
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Weighted Finite State Acceptors
Springer Handbook on Speech Processing and Speech Communication 3
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Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-
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quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-
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Weighted Finite State Transducers
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Springer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1
5

better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1d/1 2ey/0.5
ae/0.5

3t/0.3
dx/0.7

4ax/1

(c)
0

d1

1d1

d2

2d2

d3

3d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-
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Figure 2: Weighted finite-state transducer examples. These are similar to the weighted acceptors in Figure 1
except output labels are introduced on each transition. The input label i, the output label o, and weight w of
a transition are marked on the corresponding directed arc by i : o/w.

nal power series [Salomaa and Soittola, 1978, Bers-
tel and Reutenauer, 1988, Kuich and Salomaa, 1986].
Many of those operations are the weighted trans-
ducer generalizations of classical algorithms for un-
weighted acceptors. We have brought together those
and a variety of auxiliary operations in a comprehen-
sive weighted finite-state machine software library
(FsmLib) available for non-commercial use from the
AT&T Labs – ResearchWeb site [Mohri et al., 2000].

Basic union, concatenation, and Kleene closure
operations combine transducers in parallel, in series,
and with arbitrary repetition, respectively. Other op-
erations convert transducers to acceptors by project-
ing onto the input or output label set, find the best
or the n best paths in a weighted transducer, remove
unreachable states and transitions, and sort acyclic
automata topologically.

Where possible, we provided lazy (also called on-
demand) implementations of algorithms. Any finite-
state object fsm can be accessed with the three main
methods fsm.start(), fsm.final(state),
and fsm.transitions(state) that return the
start state, the final weight of a state, and the transi-
tions leaving a state, respectively. This interface can
be implemented for concrete automata in an obvious
way: the methods simply return the requested infor-
mation from a stored representation of the automa-

ton. However, the interface can also be given lazy
implementations. For example, the lazy union of two
automata returns a new lazy fsm object. When the
object is first constructed, the lazy implementation
just initializes internal book-keeping data. It is only
when the interface methods request the start state, the
final weights, or the transitions (and their destination
states) leaving a state, that this information is actually
computed, and optionally cached inside the object for
later reuse. This approach has the advantage that if
only a part of the result of an operation is needed (for
example in a pruned search), then the unused part is
never computed, saving time and space. We refer the
interested reader to the library documentation and an
overview of the library [Mohri et al., 2000] for fur-
ther details on lazy finite-state objects.

We now discuss the key transducer operations
that are used in our speech applications for model
combination, redundant path removal, and size re-
duction, respectively.

2.3. Composition

Composition is the transducer operation for com-
bining different levels of representation. For in-
stance, a pronunciation lexicon can be composed
with a word-level grammar to produce a phone-to-
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quite similar to a weighted acceptor except that it has
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ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
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This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-
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nal power series [Salomaa and Soittola, 1978, Bers-
tel and Reutenauer, 1988, Kuich and Salomaa, 1986].
Many of those operations are the weighted trans-
ducer generalizations of classical algorithms for un-
weighted acceptors. We have brought together those
and a variety of auxiliary operations in a comprehen-
sive weighted finite-state machine software library
(FsmLib) available for non-commercial use from the
AT&T Labs – ResearchWeb site [Mohri et al., 2000].

Basic union, concatenation, and Kleene closure
operations combine transducers in parallel, in series,
and with arbitrary repetition, respectively. Other op-
erations convert transducers to acceptors by project-
ing onto the input or output label set, find the best
or the n best paths in a weighted transducer, remove
unreachable states and transitions, and sort acyclic
automata topologically.

Where possible, we provided lazy (also called on-
demand) implementations of algorithms. Any finite-
state object fsm can be accessed with the three main
methods fsm.start(), fsm.final(state),
and fsm.transitions(state) that return the
start state, the final weight of a state, and the transi-
tions leaving a state, respectively. This interface can
be implemented for concrete automata in an obvious
way: the methods simply return the requested infor-
mation from a stored representation of the automa-

ton. However, the interface can also be given lazy
implementations. For example, the lazy union of two
automata returns a new lazy fsm object. When the
object is first constructed, the lazy implementation
just initializes internal book-keeping data. It is only
when the interface methods request the start state, the
final weights, or the transitions (and their destination
states) leaving a state, that this information is actually
computed, and optionally cached inside the object for
later reuse. This approach has the advantage that if
only a part of the result of an operation is needed (for
example in a pruned search), then the unused part is
never computed, saving time and space. We refer the
interested reader to the library documentation and an
overview of the library [Mohri et al., 2000] for fur-
ther details on lazy finite-state objects.

We now discuss the key transducer operations
that are used in our speech applications for model
combination, redundant path removal, and size re-
duction, respectively.

2.3. Composition

Composition is the transducer operation for com-
bining different levels of representation. For in-
stance, a pronunciation lexicon can be composed
with a word-level grammar to produce a phone-to-
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FST Weights

Formally, WFST weights must be members of a semiring

This defines special operations for mutiplication (“Times”, ⊗)
and addition (“Plus”, ⊕)

You can think of the weights as negative log-probabilities, so
that:

w1 ⊗ w2 = w1 + w2

w1 ⊕ w2 = − log(e−w1 + e−w2)

corresponding to the normal multiplication/addition
operations in the probability domain. This is the log semiring

You may also encounter the tropical semiring (the default in
OpenFst), which is the same as above, except

w1 ⊕ w2 = min(w1,w2)

which can be interpreted as taking the best of two
probabilities, rather than summing them.
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WFST Algorithms

Composition Combine transducers T1 and T2 into a single
transducer acting as if the output of T1 was passed
into T2.

Determinisation Ensure that each state has no more than a single
output transition for a given input label

Minimisation Transforms a transducer to an equivalent transducer
with the fewest possible states and transitions

Weight pushing Push the weights towards the front of the path
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The HMM as a WFST
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ASR Lecture 9 WFSTs for ASR 8



Applying WFSTs to speech recognition

Represent the following components as WFSTs

transducer input sequence output sequence

G word-level grammar words words
L pronunciation lexicon phones words
C context-dependency CD phones phones
H HMM HMM states CD phones

Composing L and G results in a transducer L ◦ G that maps a
phone sequence to a word sequence

H ◦ C ◦ L ◦ G results in a transducer that maps from HMM
states to a word sequence
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Grammar - unigram
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Grammar - bigram
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Bigram with back-off
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A toy example
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Weight-pushed version
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Lexicon, L
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For clarity, this figure omits loops back to the start state
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Determinization – det(L)
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Minimization – min(det(L))
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Composition
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Composition: L ◦ G
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min(det(L ◦ G ))
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eh:<eps>

8
er:<eps>

9

k:<eps>

10
p:<eps>

11ay:piper

12

ih:picked/6

13
p:<eps>

14
k:<eps>

er:<eps>

t:<eps>
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Context-dependency: left biphones

0

1
<eps>/ey:ey

2<eps>/t:t

3

<eps>/uw:uw

ey/ey:ey

ey/t:t

ey/uw:uw

t/ey:ey

t/t:t

t/uw:uw

uw/ey:ey

uw/t:t

uw/uw:uw
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Context-dependency: triphones

0

2

<eps>:p

1

<eps>:iy

8

<eps>/p/p:p

7<eps>/p/iy:iy

6

<eps>/p/<eps>:<eps>

5

<eps>/iy/p:p

4

<eps>/iy/iy:iy
3

<eps>/iy/<eps>:<eps>

iy/p/p:p

iy/p/iy:iy
iy/p/<eps>:<eps>

iy/iy/p:p

iy/iy/iy:iy

iy/iy/<eps>:<eps>

p/p/p:p

p/p/iy:iy

p/p/<eps>:<eps>

p/iy/p:p

p/iy/iy:iy

p/iy/<eps>:<eps>
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C ◦ L ◦ G – biphones

0

1<eps>/dh:the/2

2

<eps>/p:peter/4.5

3dh/ah:peck

4
dh/iy:peck

5
p/iy:<eps>

6

ah/p:<eps>

iy/p:<eps>

7
iy/t:<eps>

8
p/eh:<eps>

9
t/er:<eps>

10

eh/k:<eps>

11
er/p:<eps>

12p/ay:piper

13

p/ih:picked/6

14
ay/p:<eps>

15
ih/k:<eps>

p/er:<eps>

k/t:<eps>
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HMM transducer, H

0

1<eps>:<eps>

4

<eps>:<eps>

p_1:<eps>

2
p_1:<eps>

iy_1:<eps>

5
iy_1:<eps>

p_2:<eps>

3
p_2:<eps>

p_3:<eps>

p_3:p

iy_2:<eps>
6iy_2:<eps>

iy_3:<eps>
iy_3:iy

We can also use a version that outputs context-dependent
phones

H can be used to encode state-tying
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Decoding using WFSTs

Combining the transducers gives an overall HMM structure for
the ASR system – but minimisation and determination
operations on the WFSTs means it is much smaller than
naively combining the HMMs

But it is important in which order the algorithms are
combined otherwise the transducers may “blow-up”

standard approach is to determinize and minimize after each
composition

In Kaldi, ignoring one or two details

HCLG = min(det(H ◦ min(det(C ◦ min(det(L ◦ G ))))))
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Reading

Mohri et al (2008). “Speech recognition with weighted finite-state
transducers.” In Springer Handbook of Speech Processing, pp.
559-584. Springer.
http://www.cs.nyu.edu/~mohri/pub/hbka.pdf

WFSTs in Kaldi. http://danielpovey.com/files/Lecture4.pdf
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