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GMM estimation with the EM algorithm

Using GMMs with HMMs
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Background: cdf

Consider a real valued random variable X

Cumulative distribution function (cdf) F (x) for X :

F (x) = P(X ≤ x)

To obtain the probability of falling in an interval we can do
the following:

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a)

= F (b)− F (a)

ASR Lecture 6 Gaussian Mixture Models 3



Background: pdf

The rate of change of the cdf gives us the probability density
function (pdf), p(x):

p(x) =
d

dx
F (x) = F ′(x)

F (x) =

∫ x

−∞
p(x)dx

p(x) is not the probability that X has value x . But the pdf is
proportional to the probability that X lies in a small interval
centred on x .

Notation: p for pdf, P for probability
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The Gaussian distribution (univariate)

The Gaussian (or Normal) distribution is the most common
(and easily analysed) continuous distribution

It is also a reasonable model in many situations (the famous
“bell curve”)

If a (scalar) variable has a Gaussian distribution, then it has a
probability density function with this form:

p(x |µ, σ2) = N (x ;µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
The Gaussian is described by two parameters:

the mean µ (location)
the variance σ2 (dispersion)
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Plot of Gaussian distribution

Gaussians have the same shape, with the location controlled
by the mean, and the spread controlled by the variance

One-dimensional Gaussian with zero mean and unit variance
(µ = 0, σ2 = 1):
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Properties of the Gaussian distribution

N (x ;µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
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Parameter estimation

Estimate mean and variance parameters of a Gaussian from
data x1, x2, . . . , xN

Use the following as the estimates:

µ̂ =
1

N

N∑
n=1

xn (mean)

σ̂2 =
1

N

N∑
n=1

(xn − µ̂)2 (variance)
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Example: ML estimation of the mean

Consider the log likelihood of a set of N training data points
{x1, . . . , xN} being generated by a Gaussian with mean µ and
variance σ2:

L = ln p({x1, . . . , xN}|µ, σ2) = −1

2

N∑
n=1

(
(xn − µ)2

σ2
− lnσ2 − ln(2π)

)

= − 1

2σ2

N∑
n=1

(xn − µ)2 − N

2
lnσ2 − N

2
ln(2π)

By maximising the the log likelihood function with respect to µ we
can show that the maximum likelihood estimate for the mean is
indeed the sample mean:

µ̂ =
1

N

N∑
n=1

xn.
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The multivariate Gaussian distribution

The D-dimensional vector x = (x1, . . . , xD)T follows a
multivariate Gaussian (or normal) distribution if it has a
probability density function of the following form:

p(x |µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
The pdf is parameterised by the mean vector µ = (µ1, . . . , µD)T

and the covariance matrix Σ =

 σ11 . . . σ1D

...
. . .

...
σD1 . . . σDD

.

The 1-dimensional Gaussian is a special case of this pdf

The argument to the exponential 0.5(x− µ)TΣ−1(x− µ) is
referred to as a quadratic form.
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Covariance matrix

The mean vector µ is the expectation of x:

µ = E [x]

The covariance matrix Σ is the expectation of the deviation of
x from the mean:

Σ = E [(x− µ)(x− µ)T ]

Σ is a D × D symmetric matrix:

σij = E [(xi − µi )(xj − µj)] = E [(xj − µj)(xi − µi )] = σji

The sign of the covariance helps to determine the relationship
between two components:

If xj is large when xi is large, then (xi − µi )(xj − µj) will tend
to be positive;
If xj is small when xi is large, then (xi − µi )(xj − µj) will tend
to be negative.
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Spherical Gaussian
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Diagonal Covariance Gaussian
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Full covariance Gaussian
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Parameter estimation of a multivariate Gaussian
distribution

It is possible to show that the mean vector µ̂ and covariance
matrix Σ̂ that maximise the likelihood of the training data are
given by:

µ̂ =
1

N

N∑
t=1

xn

Σ̂ =
1

N

N∑
t=1

(xn − µ̂)(xn − µ̂)T

where xn = (xn,1, . . . , xn,D)T .

NB: T denotes either the number of samples or vector
transpose depending on context.
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Example data
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Maximum likelihood fit to a Gaussian
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Data in clusters (example 1)
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Example 1 fit by a Gaussian
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k-means clustering

k-means is an automatic procedure for clustering unlabelled
data

Requires a prespecified number of clusters

Clustering algorithm chooses a set of clusters with the
minimum within-cluster variance

Guaranteed to converge (eventually)

Clustering solution is dependent on the initialisation
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k-means example: data set
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k-means example: initialisation
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k-means example: iteration 1 (assign points to clusters)
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k-means example: iteration 1 (recompute centres)
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k-means example: iteration 2 (assign points to clusters)
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k-means example: iteration 2 (recompute centres)
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k-means example: iteration 3 (assign points to clusters)
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Mixture model

A more flexible form of density estimation is made up of a
linear combination of component densities:

p(x) =
M∑

m=1

P(m)p(x |m)

This is called a mixture model or a mixture density

p(x |m) : component densities

P(m) : mixing parameters

Generative model:
1 Choose a mixture component based on P(m)
2 Generate a data point x from the chosen component using

p(x |m)
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Gaussian mixture model

The most important mixture model is the Gaussian Mixture Model
(GMM), where the component densities are Gaussians

Consider a GMM, where each component Gaussian N (x;µm,Σm)
has mean µm and a spherical covariance Σm = σ2m I

p(x) =
M∑

m=1

P(m) p(x |m) =
M∑

m=1

P(m)N (x;µm, σ
2
m I)

x1 x2 xd

p(x|1) p(x|2) p(x|M)

p(x)

P(1)
P(2)

P(M)
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GMM Parameter estimation when we know which
component generated the data

Define the indicator variable zmn = 1 if component m
generated data point xn (and 0 otherwise)

If zmn wasn’t hidden then we could count the number of
observed data points generated by m:

Nm =
N∑

n=1

zmn

And estimate the mean, variance and mixing parameters as:

µ̂m =

∑
n zmnxn

Nm

σ̂2m =

∑
n zmn‖xn−µ̂m‖2

Nm

P̂(m) =
1

N

∑
n

zmn =
Nm

N
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GMM Parameter estimation when we don’t know which
component generated the data

Problem: we don’t know zmn - which mixture component a
data point comes from...

Instead we use the EM algorithm: estimate the posterior
probability P(m |x), which gives the probability that
component m was responsible for generating data point x,
using an initial set of parameters, λ0

At each iteration, we maximise∑
m

P(m|x , λ0) logP(x |m, λ)

P(m |x, λ0) =
p(x |m)P(m)

p(x)
=

p(x |m)P(m)∑M
m′=1 p(x |m′)P(m′)

(dropping the dependence on λ0 for clarity)
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Soft assignment

We can view the EM algorithm as estimating “soft counts”
for the data points, based on the component occupation
probabilities P(m |xn):

N∗m =
N∑

n=1

P(m |xn)

We can imagine this as assigning data points to component m
weighted by the component occupation probability P(m |x t)

Estimate the mean, variance and prior probabilities as:

µ̂m =

∑
n P(m |xn)xn∑
n P(m |xn)

=

∑
n P(m |xn)xn

N∗m

σ̂2m =

∑
n P(m |xn) ‖xn−µ̂m‖2∑

n P(m |xn)
=

∑
n P(m |xn) ‖xn−µ̂m‖2

N∗m

P̂(m) =
1

n

∑
n

P(m |xn) =
N∗m
n
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Example 1 fit using a GMM

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

ASR Lecture 6 Gaussian Mixture Models 33



Example 1 fit using a GMM
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Peakily distributed data (Example 2)
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Example 2 fit by a Gaussian
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Example 2 fit by a GMM
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Example 2 fit by a GMM
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Example 2: component Gaussians

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

P(x |m=1) P(x |m=2)

ASR Lecture 6 Gaussian Mixture Models 37



Comments on GMMs

GMMs trained using the EM algorithm are able to self
organise to fit a data set

Individual components take responsibility for parts of the data
set (probabilistically)

Soft assignment to components not hard assignment — “soft
clustering”

GMMs scale very well, e.g.: large GMM-based speech
recognition systems might have as many as 30,000 GMMs,
each with 32 components: sometimes 1 million Gaussian
components!! And the parameters all estimated from (a lot
of) data by EM
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HMMs with Gaussian observation probabilities

We can use a Gaussian distribution to model the observation
probability:

bj(x) = N (x;µj ,Σj)

We need to find estimate parameters µ̂j , Σ̂j for each state j . Use
the EM algorithm to weight each sample xt by the occupation
probability γj(t):

µ̂j =

∑T
t=1 γj(t)xt∑T
t=1 γj(t)

And likewise for the covariance matrices:

Σ̂j =

∑T
t=1 γj(t)(xt − µ̂j)(x − µ̂j)

T∑T
t=1 γj(t)
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Extension to Gaussian mixture model (GMM)

The assumption of a Gaussian distribution at each state is
very strong; in practice the acoustic feature vectors associated
with a state may be strongly non-Gaussian

In this case an M-component Gaussian mixture model is an
appropriate density function:

bj(x) = p(x |q = j) =
M∑

m=1

cjmN (x;µjm,Σjm)

Given enough components, this family of functions can model
any distribution.

Train using the EM algorithm again, in which the component
occupation probabilities are estimated along with the state
occupation probabilities in the E-step
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EM training of HMM/GMM

Rather than estimating the state-time alignment, we estimate
the component/state-time alignment, and component-state
occupation probabilities γjm(t): the probability of occupying
mixture component m of state j at time t.
(ξtm(j) in Jurafsky and Martin’s SLP)

Re-estimate the parameters of component m of state j as
follows

µ̂jm =

∑T
t=1 γjm(t)x t∑T
t=1 γjm(t)

Σ̂jm =

∑T
t=1 γjm(t)(x t − µ̂jm)(x − µ̂jm)T∑T

t=1 γjm(t)

The mixture coefficients are re-estimated in a similar way to
transition probabilities:

ĉjm =

∑T
t=1 γjm(t)∑M

m′=1

∑T
t=1 γjm′(t)
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Doing the computation

The forward, backward and Viterbi recursions result in a long
sequence of probabilities being multiplied

This can cause floating point underflow problems

In practice computations are performed in the log domain (in
which multiplies become adds)

Working in the log domain also avoids needing to perform the
exponentiation when computing Gaussians
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