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Recap: the HMM

qt-1 qt qt+1

P(qt|qt-1) P(qt+1|qt)

P(xt-1|qt-1) P(xt|qt) P(xt+1|qt+1)

xt-1 xt xt+1

A generative model for the sequence X = (x1, . . . , xT )

Discrete states qt are unobserved

qt+1 is conditionally independent of q1, . . . , qt−1, given qt
Observations xt are conditionally independent of each other,
given qt .

ASR Lecture 5 HMM Algorithms 3



HMMs for ASR

The three-state left-to-right topology for phones:

r1 r2 r3 ai1 ai2 ai3r1 r2 r3 t1 t2 t3

x1 x2 x3 x4 ...
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Computing likelihoods with the HMM

Joint likelihood of X and Q = (q1, . . . , qT ):

P(X ,Q|λ) = P(q1)P(x1|q1)P(q2|q1)P(x2|q2) . . . (1)

= P(q1)P(x1|q1)
T∏
t=2

P(qt |qt−1)P(xt |qt) (2)

P(qt) denotes the initial occupancy probability of each state
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HMM parameters

The parameters of the model, λ, are given by:

Transition probabilities akj = P(qt+1 = j |qt = k)

Observation probabilities bj(x) = P(x|q = j)
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The three problems of HMMs

Working with HMMs requires the solution of three problems:

1 Likelihood Determine the overall likelihood of an observation
sequence X = (x1, . . . , xt , . . . , xT ) being generated by a
known HMM topology, M.
→ the forward algorithm

2 Decoding and alignment Given an observation sequence and
an HMM, determine the most probable hidden state sequence
→ the Viterbi algorithm

3 Training Given an observation sequence and an HMM, find
the state occupation probabilities, in order to find the best
HMM parameters λ
→ the forward-backward and EM algorithms
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Viterbi algorithm

Instead of finding the likelihood over all possible state
sequences, as we do in the Forward algorithm, just consider
just the most probable path:

P∗(X |M) = maxP(X ,Q|M)

Define likelihood of the most probable partial path in state j
at time t, Vj(t)

If we are performing decoding or forced alignment, then only
the most likely path is needed

We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path
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Viterbi Recursion

Vj(t) = max
i

Vi (t − 1)aijbj(xt)

i i i

j j j

k k k

t-1 t t+1

aij

akj

ajj

Vj (t - 1) 

Vi (t - 1) 

Vk (t - 1) 

max

Vj (t )
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Viterbi Recursion

Backpointers to the previous state on the most probable path

i i i

j j j

k k k

t-1 t t+1

aij

akj

ajj

Vj (t - 1) 

Vi (t - 1) 

Vk (t - 1) 

Vj (t )

Bj (t ) = i
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2. Decoding: The Viterbi algorithm

Initialisation

V0(0) = 1

Vj(0) = 0 if j 6= 0

Bj(0) = 0

Recursion

Vj(t) =
J

max
i=0

Vi (t − 1)aijbj(xt)

Bj(t) = arg
J

max
i=0

Vi (t − 1)aijbj(xt)

Termination

P∗ = VE =
J

max
i=1

VT ( i )aiE

s∗T = BE = arg
J

max
i=1

Vi (T )aiE
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Viterbi Backtrace

Backtrace to find the state sequence of the most probable path

Bi (t ) = j
i i i

j j j

k k k

t-1 t t+1

Vj (t - 1) 

Vi (t - 1) 

Vk (t - 1) 

Vj (t )

Bk (t + 1) = i
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3. Training: Forward-Backward algorithm

Goal: Efficiently estimate the parameters of an HMM λ from
an observation sequence X and known HMM topology M:

Parameters λ:

Transition probabilities akj = P(qt+1 = j |qt = k)
Observation probabilities bj(x) = P(x|q = j)

Maximum likelihood training: find the parameters that
maximise

FML(λ) = logP(X |M, λ)

= log
∑
Q∈Q

P(X ,Q|M, λ)
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Viterbi Training

If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state

A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding
Maximum likelihood estimate of aij , if C ( i → j ) is the count
of transitions from i to j

âij =
C ( i → j )∑
k C ( i → k )

Define indicator variable zjt = 1 if the HMM is in state j at
time t, and zjt = 0 otherwise If we knew the state-time
alignment, this variable would be observed, and we could use
it to obtain the standard maximum likelihood estimates for
the mean of the observation probability distribution:

µ̂j =

∑
t zjtx t∑
t zjt

ASR Lecture 5 HMM Algorithms 14



Viterbi Training

If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state
A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding

Maximum likelihood estimate of aij , if C ( i → j ) is the count
of transitions from i to j
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Example

r1 r2 r3r1 r2 r3

x1 x2 x3 x4 ...

a11 =
1

2
a22 =

4

5
a33 =

2

3

a12 =
1

2
a23 =

1

5
a3E =

1

3
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EM Algorithm

Viterbi training is an approximation—we would like to
consider all possible paths

In this case rather than having a hard state-time alignment we
estimate a probability

State occupation probability: The probability γj(t) of
occupying state j at time t given the sequence of
observations.

We can use this for an iterative algorithm for HMM training:
the EM algorithm

Application of EM algorithm to HMMs is called ’Baum-Welch
algorithm
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EM Algorithm

If we have some initial parameters λ0 and we want to find new
parameters to maximise the likelihood FML(λ), then we can instead
maximise ∑

Q∈Q
P(Q|X ,M, λ0) logP(X ,Q|M, λ)

E-step estimate the state occupation probabilities given the
current parameters (Expectation)

M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
(Maximisation)

Why does this work? See next lecture.
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Backward probabilities

To estimate the state occupation probabilities we need to
define (recursively) another set of probabilities—the Backward
probabilities

βj(t) = p(xt+1, . . . , xT |qt = j ,M)

The probability of future observations given a the HMM is in
state j at time t

These can be recursively computed (going backwards in time)

Initialisation
βi (T ) = aiE

Recursion

βi (t) =
J∑

j=1

aijbj(xt+1)βj(t + 1) for t = T−1, . . . , 1

Termination

p(X |M) = β0(0) =
J∑

j=1

a0jbj(x1)βj(1) = αE
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Backward Recursion

βj(t) = p(xt+1, . . . , xT |qt = j ,M) =
J∑

j=1

aijbj(xt+1)βj(t + 1)

βj (t ) 

i i i

j j j

k k k

t-1 t t+1

aji

ajk

ajj

βi (t + 1) ∑

βj (t + 1) 

βk (t + 1) 
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State Occupation Probability

The state occupation probability γj(t) is the probability of
occupying state j at time t given the sequence of observations
Express in terms of the forward and backward probabilities:

γj(t) = P(qt = j |X,M) =
1

αE
αj( t )βj( t )

recalling that p(X |M) = αE

Since

αj(t)βj(t) = p(x1, . . . , xt , qt = j |M)

p(xt+1, . . . , xT |qt = j ,M)

= p(x1, . . . , xt , xt+1, . . . , xT , qt = j |M)

= p(X, qt = j |M)

P(qt = j |X,M) =
p(X, qt = j |M)

p(X |M)
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Re-estimation of transition probabilities

Similarly to the state occupation probability, we can estimate
ξi ,j(t), the probability of being in i at time t and j at t + 1,
given the observations:

ξt( i , j ) = P(qt = i , qt+1 = j |X,M)

=
p(qt = i , qt+1 = j ,X |M)

p(X |M)

=
αi (t)aijbj(xt+1)βj(t + 1)

αE

We can use this to re-estimate the transition probabilities

âij =

∑T
t=1 ξi ,j(t)∑J

k=1

∑T
t=1 ξi ,k(t)

See next lecture for re-estimation of obervation probabilities
bj(x)
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Pulling it all together

Iterative estimation of HMM parameters using the EM
algorithm. At each iteration

E step For all time-state pairs
1 Recursively compute the forward probabilities
αj(t) and backward probabilities βj( t )

2 Compute the state occupation probabilities
γj(t) and ξi,j(t)

M step Based on the estimated state occupation
probabilities re-estimate the HMM parameters:
transition probabilities aij and parameters of the
obervation probabilities, bj(x)

The application of the EM algorithm to HMM training is
sometimes called the Forward-Backward algorithm or
Baum-Welch algorithm
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Extension to a corpus of utterances

We usually train from a large corpus of R utterances

If xrt is the t th frame of the r th utterance Xr then we can
compute the probabilities αr

j ( t ), βrj ( t ), γrj (t) and ξri ,j(t) as
before

The re-estimates are as before, except we must sum over the
R utterances, ie:

âij =

∑R
r=1

∑T
t=1 ξi ,j(t)∑R

r=1

∑J
k=1

∑T
t=1 ξi ,k(t)

In addition, we usually employ “embedded training”, in which
fine tuning of phone labelling with “forced Viterbi alignment”
or forced alignment is involved. (For details see Section 9.7 in
Jurafsky and Martin’s SLP)
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Summary: HMMs

HMMs provide a generative model for statistical speech
recognition

Three key problems
1 Computing the overall likelihood: the Forward algorithm
2 Decoding the most likely state sequence: the Viterbi algorithm
3 Estimating the most likely parameters: the EM

(Forward-Backward) algorithm

Solutions to these problems are tractable due to the two key
HMM assumptions

1 Conditional independence of observations given the current
state

2 Markov assumption on the states
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