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Overview

HMM algorithms

@ HMM recap
e HMM algorithms (2)

e Likelihood computation (forward algorithm)

o Finding the most probable state sequence (Viterbi algorithm)

o Estimating the parameters (forward-backward and EM
algorithms)
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Recap: the HMM
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e A generative model for the sequence X = (xy,...,xT)
@ Discrete states g; are unobserved
@ g:4+1 is conditionally independent of q1,...,q:—1, given g:
@ Observations x; are conditionally independent of each other,

given g;.
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HMMs for ASR

The three-state left-to-right topology for phones:
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Computing likelihoods with the HMM

Joint likelihood of X and Q = (¢1,...,97):

P(X, Q|A) = P(q1)P(x1|q1)P(q2|q1) P(x2|q2) - - - (1)
T

= P(q)P(alqy) [ Paelae-1)P(xelae)  (2)
=2

P(gq:) denotes the initial occupancy probability of each state
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HMM parameters

The parameters of the model, A, are given by:
o Transition probabilities aij = P(qi+1 = j|q: = k)
@ Observation probabilities bj(x) = P(x|q = j)
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The three problems of HMMs

Working with HMMs requires the solution of three problems:

@ Likelihood Determine the overall likelihood of an observation
sequence X = (X1,...,Xt,...,XT) being generated by a
known HMM topology, M.

— the forward algorithm
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The three problems of HMMs

Working with HMMs requires the solution of three problems:

@ Likelihood Determine the overall likelihood of an observation
sequence X = (X1,...,Xt,...,XT) being generated by a
known HMM topology, M.

— the forward algorithm

@ Decoding and alignment Given an observation sequence and
an HMM, determine the most probable hidden state sequence
— the Viterbi algorithm

© Training Given an observation sequence and an HMM, find
the state occupation probabilities, in order to find the best
HMM parameters A
— the forward-backward and EM algorithms
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Viterbi algorithm

@ Instead of finding the likelihood over all possible state
sequences, as we do in the Forward algorithm, just consider
just the most probable path:

P*(X|M) = max P(X, QM)
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Viterbi algorithm

@ Instead of finding the likelihood over all possible state
sequences, as we do in the Forward algorithm, just consider
just the most probable path:

P*(X|M) = max P(X, QM)

@ Define likelihood of the most probable partial path in state j
at time t, Vj(t)

@ If we are performing decoding or forced alignment, then only
the most likely path is needed

@ We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path
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Viterbi Recursion

Vj(£) = max Vi(t — 1)ajbj(x:)

t-1 t t+1
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Viterbi Recursion

Backpointers to the previous state on the most probable path

t-1 t t+1

Vi (t-1)
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2. Decoding: The Viterbi algorithm

@ Initialisation
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2. Decoding: The Viterbi algorithm

@ Initialisation

@ Recursion

Vi(0) = mi Vit~ D)

Bj(t) = arg méx Vi(t — 1)a;bj(xt)

I:O
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2. Decoding: The Viterbi algorithm

@ Initialisation

1
Vi(0)=0 if j #£0
B; 0

@ Recursion

Vilt) = ”-‘jaé‘ Vit — 1)ajibj(x:)

Bj(t) = arg m,é‘(?( Vi(t — 1)ajbj(xt)
@ Termination

Pr= Ve = mJalx Vr(i)aie
=

J
5;— = BE = arg rp:alx \/i(T)aiE
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Viterbi Backtrace

Backtrace to find the state sequence of the most probable path
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3. Training: Forward-Backward algorithm

o Goal: Efficiently estimate the parameters of an HMM A from
an observation sequence X and known HMM topology M:
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3. Training: Forward-Backward algorithm

o Goal: Efficiently estimate the parameters of an HMM A from
an observation sequence X and known HMM topology M:
@ Parameters A\:
o Transition probabilities ay; = P(qi+1 = j|q: = k)
o Observation probabilities bj(x) = P(x|q = j)

@ Maximum likelihood training: find the parameters that
maximise

Fuc(\) = log P(X|M, \)

=log Y | P(X, QIM, )
Qe
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Viterbi Training

o If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state
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Viterbi Training

o If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state

@ A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding

o Maximum likelihood estimate of aj;, if C(i — j) is the count
of transitions from i to j

s Cli—=J)
WS C(i— k)
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Viterbi Training

If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state
A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding
Maximum likelihood estimate of ajj, if C(7 — j) is the count
of transitions from i to j

s Cli—=J)
WS C(i— k)
Define indicator variable zj; = 1 if the HMM is in state j at
time t, and z;; = 0 otherwise If we knew the state-time
alignment, this variable would be observed, and we could use
it to obtain the standard maximum likelihood estimates for
the mean of the observation probability distribution:

f; = Dot ZjeXe
! > Zjt
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EM Algorithm

o Viterbi training is an approximation—we would like to
consider all possible paths
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EM Algorithm

o Viterbi training is an approximation—we would like to
consider all possible paths

@ In this case rather than having a hard state-time alignment we
estimate a probability

e State occupation probability: The probability ~;(t) of
occupying state j at time t given the sequence of
observations.

@ We can use this for an iterative algorithm for HMM training:
the EM algorithm

@ Application of EM algorithm to HMMs is called 'Baum-Welch
algorithm
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EM Algorithm

If we have some initial parameters Ag and we want to find new
parameters to maximise the likelihood Fyy (A), then we can instead
maximise

> P(QIX, M, o) log P(X, Q| M, \)

QeQ

E-step estimate the state occupation probabilities given the
current parameters (Expectation)

M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
(Maximisation)

Why does this work? See next lecture.
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Backward probabilities

To estimate the state occupation probabilities we need to
define (recursively) another set of probabilities—the Backward
probabilities

/Bj(t) = p(Xt+17 <o s XT | qt :JvM)
The probability of future observations given a the HMM is in
state j at time t
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Backward probabilities

@ To estimate the state occupation probabilities we need to
define (recursively) another set of probabilities—the Backward
probabilities

/Bj(t) = p(Xt+17 <o s XT | qt :JvM)
The probability of future observations given a the HMM is in

state j at time t
@ These can be recursively computed (going backwards in time)
o Initialisation
Bi(T) = aie
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Backward probabilities

To estimate the state occupation probabilities we need to
define (recursively) another set of probabilities—the Backward
probabilities

Bi(t) = p(xe41, - - xT[qr = j, M)
The probability of future observations given a the HMM is in
state j at time t
These can be recursively computed (going backwards in time)
e Initialisation
Bi(T) = aie
e Recursion

J
B,’(t) = Z a,'jbj(Xt+1)ﬁj(t + 1) fort=T-1,...,1
j=1
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Backward probabilities

@ To estimate the state occupation probabilities we need to
define (recursively) another set of probabilities—the Backward
probabilities

Bi(t) = p(xe41, - - xT[qr = j, M)
The probability of future observations given a the HMM is in
state j at time t
@ These can be recursively computed (going backwards in time)
e Initialisation
Bi(T) = aie
e Recursion

B,’(t) = Z a,'jbj(Xt+1)ﬁj(t + 1) fort=T-1,...,1
j=1

e Termination

(X|M Zaoj X1 /8_1 = Qf
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Backward Recursion

/Bj(t):p(xt+1a"'7XT|ql’:jaM Zalj Xt+1 Bj t+1)

t-1 t t+1

Pr(t+1)
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State Occupation Probability

e The state occupation probability +;(t) is the probability of
occupying state j at time t given the sequence of observations
@ Express in terms of the forward and backward probabilities:

%(t) = P(ge = jIX, M) = alEaj( £)8i(t)

recalling that p(X| M) = ag

@ Since
Oéj(t)ﬁj(t):p(xl,---,xt,Qt:_j’M)
P(Xt+1a---7XT|qt:j7M)
= P(X1y -y Xty Xt 1y - - - XT, Gt = J | M)
P(qe = j|X, M) =
(qt J| ) p(X\M)
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Re-estimation of transition probabilities

@ Similarly to the state occupation probability, we can estimate
&i j(t), the probability of being in i at time t and j at t + 1,
given the observations:

gt(lv./) = P(qt:I7 qt+1:j|X7M)
p(g:=1i,qenn =4, X| M)
P(X|M)

_ai(t)ajbi(xe+1)8i(t + 1)
_ -

@ We can use this to re-estimate the transition probabilities

NI /Y ¥(0)
R ESIETN(

@ See next lecture for re-estimation of obervation probabilities
bj(x)
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Pulling it all together

@ lterative estimation of HMM parameters using the EM
algorithm. At each iteration
E step For all time-state pairs
© Recursively compute the forward probabilities
aj(t) and backward probabilities 5;( t)
@ Compute the state occupation probabilities

7;(t) and & j(t)

M step Based on the estimated state occupation
probabilities re-estimate the HMM parameters:
transition probabilities a;j and parameters of the
obervation probabilities, b;(x)

@ The application of the EM algorithm to HMM training is
sometimes called the Forward-Backward algorithm or
Baum-Welch algorithm
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Extension to a corpus of utterances

@ We usually train from a large corpus of R utterances

o If x{ is the tth frame of the rth utterance X" then we can
compute the probabilities af(t), 57(t), 7/(t) and & ;(t) as
before

@ The re-estimates are as before, except we must sum over the
R utterances, ie:

5, = 25:1 ZtT:1 gi,j(t)
R LG
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Extension to a corpus of utterances

@ We usually train from a large corpus of R utterances

o If x{ is the tth frame of the rth utterance X" then we can
compute the probabilities af(t), 57(t), 7/(t) and & ;(t) as
before

@ The re-estimates are as before, except we must sum over the
R utterances, ie:

5, = 25:1 21:1 fi,j(t)
R LG

@ In addition, we usually employ “embedded training’, in which
fine tuning of phone labelling with “forced Viterbi alignment”
or forced alignment is involved. (For details see Section 9.7 in
Jurafsky and Martin's SLP)
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Summary: HMMs

@ HMMs provide a generative model for statistical speech
recognition
@ Three key problems

@ Computing the overall likelihood: the Forward algorithm
@ Decoding the most likely state sequence: the Viterbi algorithm
© Estimating the most likely parameters: the EM
(Forward-Backward) algorithm
@ Solutions to these problems are tractable due to the two key
HMM assumptions
@ Conditional independence of observations given the current

state
@ Markov assumption on the states
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