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Overview

@ Introduction to HMMs models
e HMMs for ASR

@ Likelihood computation with the forward algorithm
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Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W* is

given by
W* = arg max P(W | X)

ASR Lecture 4 3



Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W* is

given by
W* = arg max P(W | X)

Applying Bayes’ Theorem:
p(X | W)P(W)
p(X)

o p(X | W)P(W)
W* = argmax p(X|W)  P(W)
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The Hidden Markov model

@ A statistical model for time series data with a set of discrete
states {1,...,J} (we index them by j or k)
@ At each time step t:

e the model is in a fixed state g;.
e the model generates an observation, x;, according to a
probability distribution that is specific to the state

@ We don't actually observe which state the model is in at each
time step — hence “hidden”.

@ Observations can be either continous or discrete (usually the
former)
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HMM probabilities

RN

@ Imagine we know the state at a given time step t, g = k
@ Then the probability of being in a new state, j at the next
time step, is dependent only on g;. This is the Markov

assumption.
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@ Alternatively: g:y1 is conditionally independent of
q1,---,QGt—1, given qx.
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HMM assumptions
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Observation x; is conditionally independent of other observations,
given the state that generated it, g
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HMM parameters

The parameters of the model, A, are given by:
o Transition probabilities aij = P(qi+1 = j|q: = k)
@ Observation probabilities bj(x) = P(x|q = j)
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HMM topologies

@ The HMM topology determines the set of allowed transitions
between states
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HMM topologies

@ The HMM topology determines the set of allowed transitions
between states

@ In principle any topology is possible
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HMM topologies
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HMM topologies

@ The HMM topology determines the set of allowed transitions
between states

@ In principle any topology is possible

433

Not all transition probabilities are shown
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Example topologies
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left-to-right model

parallel path left-to-right model
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ergodic model
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azs
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d4s
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Traditional speech recognition: left-to-right HMM with 3 ~ 5 states

Speaker recognition: ergodic HMM
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HMMs for ASR

We generally model words or phones with a left-to-right topology
with self loops.
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HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three
distinct states (this also enforces a minimum phone duration of
three frames of observations)
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HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three
distinct states (this also enforces a minimum phone duration of
three frames of observations)

ceoo000000

The phone model topologies can be concatenated to form a HMM
for the whole word
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HMMs for ASR

Traditional HMMs for ASR tend to model each phone with three
distinct states (this also enforces a minimum phone duration of
three frames of observations)

®eo000000
g
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This model naturally generates an alignment between states and
observations (and hence words/phones).
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Computing likelihoods with the HMM

Suppose we have a sequence of observations of length T,

X = (x1,...,x7), and Q is a known state sequence, (q1,...,q97).
Then we can use the HMM to compute the joint likelihood of X
and Q:
P(X, Q;A) = P(q1)P(x1|q1) P(q2|q1) P(x2|q2) - . - (1)
T
= P(q)P(xala1) [ | Paelge-1)P(xelas)  (2)
t=2

P(q1) denotes the initial occupancy probability of each state
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The three problems of HMMs

Working with HMMs requires the solution of three problems:

@ Likelihood Determine the overall likelihood of an observation
sequence X = (X1,...,X¢,...,XT) being generated by a
known HMM topology, M.
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The three problems of HMMs

Working with HMMs requires the solution of three problems:

@ Likelihood Determine the overall likelihood of an observation
sequence X = (X1,...,X¢,...,XT) being generated by a
known HMM topology, M.

@ Decoding and alignment Given an observation sequence and
an HMM, determine the most probable hidden state sequence

© Training Given an observation sequence and an HMM, find
the state occupation probabilities
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Computing likelihood

© Likelihood Determine the overall likelihood of an observation
sequence X = (X1,...,X¢,...,XT) being generated by a
known HMM topology, M.
— the forward algorithm

NB. We do not know the state sequence!
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Notes on the HMM topology

By talking about HMM topologies in the context of speech
recognition, M, we can mean:

@ A restricted left-to-right topology based on a known
word /sentence, leading to a “trellis-like” structure over time

@ A much less restricted topology based on a grammar or
language model — or something in between

@ Some algorithms are not (generally) suitable for unrestricted
topologies
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Example: trellis for a 3-state left-to-right phone HMM

time
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Likelihood

@ Goal: determine p(X| M)
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Likelihood

@ Goal: determine p(X| M)

@ Sum over all possible state sequences Q = (q1,...,q7) that
could result in the observation sequence X

p(X|M) = " P(X, QM)

QeQ
.
=Y P(@)PCala) ] Paelge—1)P(xelq:)
QeQ t=2
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Likelihood

@ Goal: determine p(X| M)

@ Sum over all possible state sequences Q = (q1,...,q7) that
could result in the observation sequence X

pX|M) = P(X,QIM)

QeQ
;
= > P(@)P(xalar) [ | P(aelge—1)P(xelar)
QeQ t=2

@ How many paths Q do we have to calculate?

~ NxNx---N =NT N : number of HMM states
—_— X
T times T . length of observation

eg. NT =~ 10% for N=3, T=20
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Likelihood

@ Goal: determine p(X| M)

@ Sum over all possible state sequences Q = (q1,...,q7) that
could result in the observation sequence X

pX|M) = P(X,QIM)

QeQ
;
= > P(@)P(xalar) [ | P(aelge—1)P(xelar)
QeQ t=2

@ How many paths Q do we have to calculate?

~ NxNx---N =NT N : number of HMM states
—_— X
T times T . length of observation

eg. NT =~ 10% for N=3, T=20
o Computation complexity of multiplication: O(2TNT)
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Likelihood: The Forward algorithm

The Forward algorithm:

@ Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

@ Reduces the computational complexity to O( TN?)
@ State time trellis for an arbitrary HMM topology

t-1 t t+1
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The forward probability

Define the Forward probability, aj(t): the probability of observing
the observation sequence x; ...x; and being in state j at time t:

aj(t) = p(x1, ..., Xt, gr = j| M)

We can recursively compute this probability
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Initial and final state probabilities

It what follows it is convenient to define:

@ an additional single initial state 5; = 0, with transition
probabilities

aoj = P(q1 =)
denoting the probability of starting in state j

@ a single final state, Sg, with transition probabilities aje
denoting the probability of the model terminating in state j.

@ Sy and Sg are both non-emitting
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Likelihood: The Forward recursion

@ Initialisation

@ Recursion
J
aj(t) =) ai(t—1agbi(xe) 1<j<J1<t<T
i=0
@ Termination

J
p(X|M) =ag = Zai(T)aiE
i=1

s;: initial state, sg: final state
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Likelihood: Forward Recursion

J
Oéj(t) = p(Xl, <o X, qt :JlM) = Zai(t - 1)al_lb_/(xt)

i=1

(lk(t-1)
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More HMM algorithms

@ Finding the most likely path with the Viterbi algorithm
@ Parameter estimation:

e the Forward-Backward algorithm
o the Expectation-Maximisation algorithm
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