Multilingual and Low-Resource Speech Recognition

Peter Bell

Automatic Speech Recognition – ASR Lecture 15 14 March 2022

Languages of the World

- Over 6,000 languages globally....
- In Europe alone
 - 24 official languages and 5 "semi-official" languages
 - Over 100 further regional/minority languages
 - If we rank the 50 most used languages in Europe, then there are over 50 million speakers of languages 26-50 (Finnish – Montenegrin)
- 3,000 of the world's languages are endangered
- Google cloud speech API covers over 98 languages and more than 300 accents/dialects of those languages; Apple Siri covers over 21 languages; Google assistant has over 30

Under-resourced languages

Under-resourced (or low-resourced) languages have some or all of the following characteristics

- limited web presence
- lack of linguistic expertise
- lack of digital resources: acoustic and text corpora, pronunciation lexica, ...

Under-resourced languages thus provide a challenge for speech technology

See Besaciera et al (2014) for more

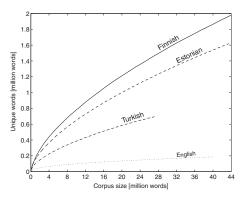
Speech recognition of under-resourced languages

- Training acoustic and language models with limited training data
- Transferring knowledge between languages
- Challenge of constructing pronunciation lexica
- Dealing with language specific characteristics (e.g. morphology)

Morphology

- Many languages are morphologically richer than English: this has a major effect of vocabulary construction and language modelling
- Compounding (eg German): decompose compund words into constituent parts, and carry out pronunciation and language modelling on the decomposed parts
- Highly inflected languages (eg Arabic, Slavic languages): specific components for modelling inflection (eg factored language models)
- Inflecting and compounding languages (eg Finnish, Estonian)
- All approaches aim to reduce ASR errors by reducing the OOV rate through modelling at the morph level; also addresses data sparsity

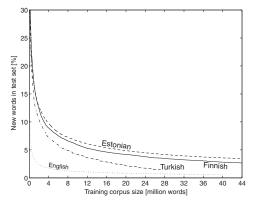
Vocabulary size for different languages



Creutz et al (2007)

6

OOV Rate for different languages



Creutz et al (2007)

Segmenting into morphs

- Linguistic rule-based approaches require a lot of work for an under-resourced language!
- Automatic approaches use automatically segment and cluster words into their constitutent morphs
- Morfessor (http://www.cis.hut.fi/projects/morpho/)
 - "Morfessor is an unsupervised data-driven method for the segmentation of words into morpheme-like units."
 - Aims to identify frequently occurring substrings of letters within either a word list (type-based) or a corpus of text (token-based)
 - Uses a probabilistic framework to balance between few, short morphs and many, longer morphs
- Morph-based language modelling uses morphs instead of words – may require longer context (since multiple morphs correspond to one word)

Code switching

- Code switching can be common in low-resource languages
- Hard to model if only monolingual training data is available
- Can interpolate monolingual language models, but how to predict likely switching points?
- Need to consider if there is a change in phonology

Code switching

- Code switching can be common in low-resource languages
- Hard to model if only monolingual training data is available
- Can interpolate monolingual language models, but how to predict likely switching points?
- Need to consider if there is a change in phonology

"masithi 3 o'clock ke eclocktower mamela kyk hier ndiyamazi i know him i got him ... ndizithi kuye masiye e waterfront i wont tell him that i'm meeting a friend but ndiyayazi he wont mind xasidibana nawe he will buy us drinks and some lunch then sonwabe wethu"

Multilingual and cross-lingual acoustic models

How to share information from acoustic models in different languages?

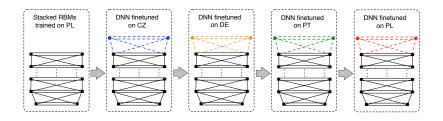
- General principle use neural network hidden layers to learn a multilingual representation of speech
- Share hidden layers between languages
- Can share phone sets or map them between languages...
- ... but output layers are often monolingual, language specific

Multilingual and cross-lingual acoustic models

Methods to avoid a shared phoneme inventory

- Multi-lingual phone sets use a network with multilingual hidden representations directly in a hybrid DNN/HMM systems
- Hat-swap/multi-task train a network with an output layer for each language, but shared hidden layers
- Multilingual bottleneck use a bottleneck hidden layer (trained in a multilingual) way as features for either a GMMor NN-based system
- Pre-training without phonetic labels in a language-independent manner

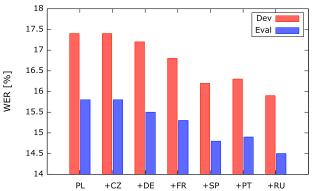
Hat Swap – architecture



Ghoshal et al, 2013

Hat Swap – experiment

Recognition of GlobalPhone Polish

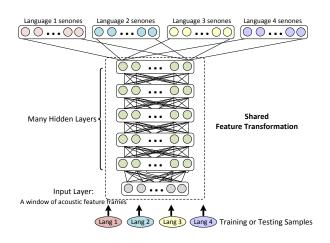


Ghoshal et al, 2013

Multi-lingual networks ("block softmax")

- Train one network for all languages:
 - separate output layer for each language
 - shared hidden layers
- Each training input is propagated forward to the output layer of the corresponding language – only that output layer is used to compute the error used to train the network for that input
- Since the hidden layers are shared, they must learn features relevant to all the output layers (languages)
- Can view this as a parallel version of hat swap

Multi-lingual networks – architecture

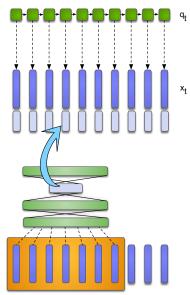


Huang et al, 2013

NB: A senone is a context-dependent tied state

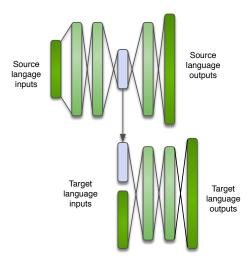
ASR Lecture 15

Bottleneck features

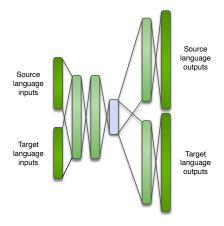


16

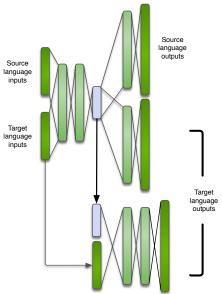
Cross-lingual bottleneck features



Multi-lingual bottleneck network



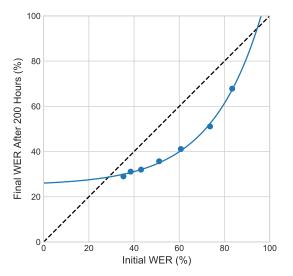
Use of BN features in HMM/DNN systems



Semi-supervised training

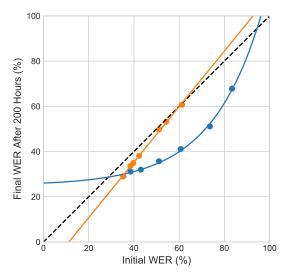
- Assume we only have a only a small amount of data is transcribed, but much more untranscribed data → train a seed model and use it to transcribe more data
- But don't want to train further on incorrect captions
- Traditional solution: apply data filtering based on confidence scores
- This can select out the harder data that is most useful for refining the system
- Solution (Manohar, 2018): use a lattice to incorporate uncertainty about the transcription, train with LF-MMI criterion
- Requires a strong language model for the best performance (Wallington et al, 2021)

Example: Tagalog



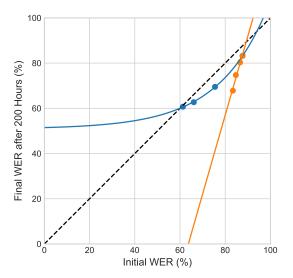
From Wallington et al (2012)

Example: Tagalog



From Wallington et al (2012)

Example: Tagalog



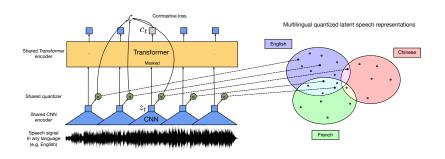
From Wallington et al (2012)

ASR Lecture 15 Multilingual and Low-Resource Speech Recognition 21

Pre-training

- Pre-train the network without using label information
- Can pre-train on multilingual or single language data, then fine tune on the target language
- Examples:
 - RBM pre-training (Swietojanski et al, 2012)
 - Self-supervised training (Conneau et al, 2020)

Self-supervised training



Conneau et al, 2020

Graphemes and phonemes

- Can represent pronunciations as a sequence of graphemes (letters) rather than a sequence of phones
- Advantages of grapheme-based pronunciations
 - No need to construct/generate phone-based pronunciations
 - Can use unicode attributes to assist in decision tree construction
- Disadvantages: not always direct link between graphemes and sounds (eg. in English)

Grapheme-based ASR results for 6 low-resource languages

Language	ID	System	WER (%)		
			tg	+cn	cnc
Kurmanji	205	Phonetic	67.6	65.8	64.1
Kurdish		Graphemic	67.0	65.3	
Tok Pisin	207	Phonetic	41.8	40.6	39.4
		Graphemic	42.1	41.1	
Cebuano	301	Phonetic	55.5	54.0	52.6
		Graphemic	55.5	54.2	
Kazakh	302	Phonetic	54.9	53.5	51.5
		Graphemic	54.0	52.7	
Telugu	303	Phonetic	70.6	69.1	67.5
		Graphemic	70.9	69.5	
Lithuanian	304	Phonetic	51.5	50.2	48.3
		Graphemic	50.9	49.5	

IARPA Babel, 40h acoustic training data per language, monolingual training; cnc is confusion network combination, combining the grapheme- and phone-based systems Gales et al (2015)

Speech recognition systems for low-resource languages

- Morph-based language modeling
- Transferring data between acoustic models based on multilingual hidden representations
- Grapheme-based pronunciation lexica

Speech recognition systems for low-resource languages

- Morph-based language modeling
- Transferring data between acoustic models based on multilingual hidden representations
- Grapheme-based pronunciation lexica

In the future:

- "Zero-resource" ASR (no transcribed data at all)
- Languages without written forms
- Much active research in this area (including at Edinburgh)

Zero resource cross-lingual training...

DECIPHERING SPEECH: A ZERO-RESOURCE APPROACH TO CROSS-LINGUAL TRANSFER IN ASR

Ondřej Klejch, Electra Wallington, Peter Bell

Centre for Speech Technology Research, University of Edinburgh, United Kingdom {o.klejch, electra.wallington, peter.bell}@ed.ac.uk

ARSTRACT

We present a method for cross-lingual training an ASR system using absolutely no transcribed training data from the target language, and with no phonetic knowledge of the language in question. Our approach uses a novel application of a decipherment algorithm, which operates given only unpaired speech and text data from the target language. We apply this decipherment to phone sequences generated by a universal phone recogniser trained on outof-language speech corpora, which we follow with flat-start semisupervised training to obtain an acoustic model for the new language. To the best of our knowledge, this is the first practical approach to zero-resource cross-lingual ASR which does not rely on any hand-crafted phonetic information. We carry out experiments on read speech from the GlobalPhone corpus, and show that it is possible to learn a decipherment model on just 20 minutes of data from the target language. When used to generate pseudo-labels for semi-supervised training, we obtain WERs that range from 25% to just 5% absolute worse than the equivalent fully supervised models trained on the same data.

suggested a move from "expert-based" systems, with a dictionary and phoneme set provided, through "data-based" systems with parallel speech and text data, to what he called "decipher-based" systems, through which ASR training could be achieved using entirely untranscribed speech, together with unpaired text data. This scenario has the significant advantage that for any languages with a significant web presence at least, both resources are likely to be relatively abundant without any human effort.

Since Glass's paper, significant effort has been devoted to this so-called "zero-resource" scenario. Approaches to this problem tend to fall into two categories: those attempting to learn phoneme- or word-like patterns from speech in a bottom up manner, often motivated by child speech learning [6, 7]; and those using cross-lingual information to inform the target model. The latter category extends a long strand of research into cross-lingual ASR methods – which seek to improve supervised training on a target language through the use of out-of-language language data – to the case where no transcribed data exists for the target language. There have been a variety of recent approaches to this problem, all of which in one way another address the problem of matching the modelling units of the

Reading (1)

- L Besaciera et al (2014). "Automatic speech recognition for under-resourced languages: A survey", Speech Communication, 56:85-100. http://www.sciencedirect.com/science/article/pii/ S0167639313000988
- Z Tüske et al (2013). "Investigation on cross- and multilingual MLP features under matched and mismatched acoustical conditions", ICASSP. http://ieeexplore.ieee.org/abstract/document/6639090/
- A Ghoshal et al (2013). "Multilingual training of deep neural networks", ICASSP-2013.
 - http://ieeexplore.ieee.org/abstract/document/6639084/
- J-T Huang et al (2013). "Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers", ICASSP. http://ieeexplore.ieee.org/abstract/document/6639081/.
- M Gales et al (2015). "Unicode-based graphemic systems for limited resource languages", ICASSP. http://ieeexplore.ieee.org/document/7178960/

Reading (2)

- M Creutz et al (2007). "Morph-based speech recognition and modeling OOV words across languages", ACM Trans Speech and Language Processing, 5(1). http://doi.acm.org/10.1145/1322391.1322394
- P. Swietojanski et al. (2012), "Unsupervised cross-lingual knowledge transfer in DNN-based LVCSR", In Proc. IEEE SLT. https://ieeexplore.ieee.org/document/6424230
- A. Conneau, et al. (2020). "Unsupervised cross-lingual representation learning for speech recognition", arXiv:2006.13979. https://arxiv.org/abs/2006.13979
- V. Manohar, et al. (2018) "Semi-supervised training of acoustic models using lattice-free MMI". In Proc. IECC ICASSP (pp. 4844-4848). https://ieeexplore.ieee.org/abstract/document/8462331
- E. Wallington, et al. (2021) "On the learning dynamics of semi-supervised training for ASR". In Proc. Interspeech. https://www.isca-speech. org/archive/interspeech_2021/wallington21_interspeech.html