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Modelling phonetic context
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Recap: DNN for TIMIT

3x61 = 183 state outputs
@ Deeper: Deep neural network
>< architecture — multiple hidden

©~2ooo hidden units O layers

@ Wider: Use HMM state
alignment as outputs rather than
hand-labelled phones — 3-state
HMMs, so 3x48 states

2000 hidden units @ Training many hidden layers is
Q - @ computationally expensive — use
= GPUs to provide the
O 9x39 MFCC inputs Q computational power

3-8 hidden layers
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Recap: Cambridge GMM system

CU-HTK 2000
Base model HMM-GMM
Acoustic context A, AA features, HLDA projection
Phonetic context Tied state triphones & quinphones

Speaker adaptation | Gender-dependent models, VTLN, MLLR
Training criterion ML 4+ MMI sequence training

System architecture | 6-pass system

Other features Multi-system combination

Hub 2000 WER 19.3%
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Tandem scheme

@ Basic idea: use the output probabilities from the NN as input
features to standard CD-HMM-GMM system
@ Combines the benefits of both:
e NNs good at modelling wide acoustic contexts, correlated
input features
e HMM-GMMs good for speaker adaptation, modelling phonetic
context, sequence-training
@ NN output probabilities are Gaussianised by taking logs and
decorrelating with PCA

@ Early variants used purely NN features; later variants
augmented the feature vector with standard acoustic features

e Can also use “bottleneck features” (narrow, intermediate NN
layers)
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Modelling phonetic context with DNNs

@ In the 1990s, this was considered hard (see Bourlard et al,
1992)

@ But in 2011, a simple solution emerged: use state-tying from
a GMM system
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Modelling phonetic context with DNNs

o Inthel i i
1992()3 990s, this was considered hard (see Bourlard et al,

e But in 2011, a simple solution em i
, erged: use state-
= GMIM system g state-tying from

Context-Dependent Pre-Trained Deep Neural
Networks for Large-Vocabulary Speech Recognition

George E. Dahl, Dong Yu, Senior Member, IEEE, Li Deng, Fellow, IEEE, and Alex Acero, Fellow, IEEE

Abstraci—We propose a novel context-dependent (CD)modelfor  fields (CRFs) [18]-[20], hidden CRFs [21], [22), and segmental
large-vocabulary speech recognition (LVSR) that leverages recent  CRF's [23]). Despite these advances, the elusive goal of human
:‘::::‘f;;r“;ﬁi:‘:‘? dﬁge:k:g;‘;ﬁﬁ_’kﬁd“g;”ﬁ‘;ﬁ::_":;ﬂ‘;‘: l?vel accuracy in real-world conditions requires continued,
(DNN-HMAM) hybrid architecture that trains the DNN to produce vibrant research. .

a distribution over senones (tied triphone states) as its output. The Recently, a major advance has been made in training densely
deep belief network pre-training algorithm is a robust and often  connected, directed belief nets with many hidden layers. The
helpful way to initialize deep neural networks generatively that  resulting deep belief nets learn a hierarchy of nonlinear feature
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Context-dependent hybrid HMM /DNN

First train a context-dependent HMM/GMM system on the
same data, using a phonetic decision tree to determine the
HMM tied states

Perform Viterbi alignment using the trained HMM/GMM and
the training data

Train a neural network to map the input speech features to a
label representing a context-dependent tied HMM state

o So the size of the label set is thousands (number of
context-dependent tied states) rather than tens (number of
context-independent phones) Each frame is labelled with the
Viterbi aligned tied state

Train the neural network using gradient descent as usual

Use the context-dependent scaled likelihoods obtained from
the neural network when decoding
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Example: HMM/DNN acoustic model for Switchboard

O 9304 CD state outputs O

Q 2048 hidden units Q

7 hidden layers

O 2048 hidden units O

O 9x39 = 351 PLP inputs O

(Siede et al (2011))
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Example: HMM/DNN acoustic model for Switchboard

e Alignments generated from context-dependent HMM/GMM
system
e Hybrid HMM/DNN system

o Context-dependent — 9304 output units obtained from Viterbi
alignment of HMM/GMM system

e 7 hidden layers, 2048 units per layer

e 11 frames of acoustic context

@ DNN-based system results in significant word error rate
reduction compared with GMM-based system

@ Note: still no speaker adaptation or sequence-level training
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Modelling acoustic context
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Modelling acoustic context

@ DNNs allow the network to model acoustic context by
including neighbouring frame in the input layer — the output is
thus estimating the phone or state probability using that
contextual information

@ Richer NN models of acoustic context:

o Time-delay neural networks (TDNNs)

@ each layer processes a context window from the previous layer
o higher hidden layers have a wider receptive field into the input

o Recurrent neural networks (RNNs)
@ hidden units at time t take input from their value at time t — 1
@ these recurrent connections allow the network to learn state
e Both approaches try to learn invariances in time, and form
representations based on compressing the history of
observations
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TDNNs — first hidden layer receptive field

A
Hidden
Units Hidden
Layer 1
Features
Input
Layer

Time
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TDNNs — first hidden layer receptive field
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TDNNs — first hidden layer receptive field
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TDNNs — second hidden layer receptive field

H Hidden
Layer 2
“ . . .
@ Higher hidden layers take input
Hidden from a time window over the
Unit . . .
e Hidden previous hidden layer
it Layer 1 .
JH @ Lower hidden layers learn from
\ . .
narrower contexts, higher hidden
layers from wider acoustic
contexts
@ Receptive field increases for
Features i i
higher hidden layers
Input
Layer
Time
—_—
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TDNNs — second hidden layer receptive field

H Hidden
Layer 2
“ . . .
@ Higher hidden layers take input
Hidden from a time window over the
units Hidden previous hidden layer
t Layer 1
Tt @ Lower hidden layers learn from
\ . .
narrower contexts, higher hidden
layers from wider acoustic
contexts
@ Receptive field increases for
Features i i
higher hidden layers
Input
Layer
Time
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TDNNs — second hidden layer receptive field

H Hidden
Layer 2
“ . . .
@ Higher hidden layers take input
Hidden from a time window over the
Unit Hidden . .
ne Layer 1 previous hidden layer
| .
Tt @ Lower hidden layers learn from
\ . .
narrower contexts, higher hidden
layers from wider acoustic
I contexts
@ Receptive field increases for
Features i i
higher hidden layers
Input
Layer
Time
—_—
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TDNNs — second hidden layer receptive field

I I Hidden
Layer 2
A @ Higher hidden layers take input
from a time window over the
Hidden . .
Units Hiddon previous hidden layer
Laver1 @ Lower hidden layers learn from
narrower contexts, higher hidden
layers from wider acoustic
/ \ contexts
@ Receptive field increases for
Features higher hidden layers
Input
Layer
Time
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Example TDNN Architecture

‘ Output HMM states

Fully connected layer
(TDNN Layer [0])

TDNN Layer

[-5,]
“ MAAMMMMRMMM
DA COUE VALK TD'\[I_’\; Iéiayer
AL ’
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MU AL UKL TD'\[I_';E?yer
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A
UROECR R EDE XX TD’}‘»Z’;]ayer
L

w11

@ View a TDNN as a 1D
convolutional network
with the transforms for
each hidden unit tied
across time

TDNN layer with context
[-2,2] has 5x as many
weights as a regular DNN
layer

@ More computation, more

storage required!

I TTTTTTT] InputFeatures
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Example TDNN Architecture

‘ Output HMM states

Fully connected layer
(TDNN Layer [0])

TDNN Layer

[-5,5]
[ ]
- W ",‘ I-:i::den layer
/) ~700 ReLU hidden units
22
wr IIIIIIIW
A
MAAMAMMAAAMAMALL TDh{l_l;;;ayer
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(L

w11

@ View a TDNN as a 1D
convolutional network
with the transforms for
each hidden unit tied
across time

TDNN layer with context
[-2,2] has 5x as many
weights as a regular DNN
layer

@ More computation, more

storage required!

I TTTTTTT] InputFeatures
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Example TDNN Architecture

‘ Output HMM states

Fully connected layer

TDNN Layer

[-5,5]
- WW W I Ht\*jden layer
1 X”“ ~700 ReLU hidden units

il MWMN\ e
Yl M\vwwvw 4“ 47

X X X X X XW Incoming weights from

| it

i
1

I
W 9 [*]
)

TDNN Layer
[-2.2]

il
MMM
.

11 t+11

(TDNN Layer [0) @ View a TDNN as a 1D

convolutional network
with the transforms for
each hidden unit tied
across time

TDNN layer with context
[-2,2] has 5x as many
weights as a regular DNN
layer

More computation, more
storage required!

I TTTTTTT] InputFeatures
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Sub-sampled TDNN

‘ Output HMM states

Fully connected layer
(TDNN Layer (0))

TDNN Layer
{-5,5}

TDNN Layer
2,2}

7

TDNN Layer
2,2

TDNN Layer
k [-2.2]

[IITTTTTTITTTITTITTITTITTTITTT] Input Features

11

t w11

@ Sub sample window of

hidden unit activations

Large overlaps between
input contexts at
adjacent time steps —
likely to be correlated

Allow gaps between
frames in a window (cf.
dilated convolutions)

@ Sub-sampling saves

computation and reduces
number of model size
(number of weights)
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Example sub-sampled TDNN

s Peddinti (2015)

Loy Sub-sampled
Layer | Context Context
1 [-2,2] [-2,2]
rever? 2 [-1,2] {-1,2}
3 [-3.3] {-3,3}
Layer 1 4 [-7.2] {-7,2}
13 t+9 5 {0} {0}

Increase the context for higher layers of the network

Subsampled so that difference between sampled hidden units
is multiple of 3 to enable “clean” sub-sampling

@ Asymmetric contexts
@ MFCC features in this case
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Recurrent Networks
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Recurrent network

Output (t-1) ‘

Output (t)

Output (t+1) ‘

w® w® w®
R w ) w B (R)
w® Hidden (t-1) }“’——{ Hidden (t }"—»‘ Hidden (t+1) }w—'
w® WD) w®

Input (t-1) ‘

Input (t)

Input (t+1) ‘

@ View an RNN for a sequence of T inputs as a T-layer network

with shared weights

@ Train by doing backpropagation through this unfolded network
@ Recurrent hidden units are state units: can keep information

through time

e State units as memory — remember things for (potentially) an

infinite time

e State units as information compression — compress the history
(sequence observed up until now) into a state representation
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Simple recurrent network unit

h(t-1) -~ h(t) === -

9t

Wi \W ..

———————————————— h(t-1) x(t)

g(t) = Wpex(t) + Wpph(t — 1) + by,
h(t) = tanh (g(t))
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——————————————— > h(t-1) x(t)
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LSTM — Internal recurrent state

o Internal recurrent state
(“cell") ¢(t) combines
previous state c(t — 1)
and LSTM input g(t)

h(t-1) -------- [ — -

O“”' v 4

J >

9(t)

Win \Whz

——————————————— h(t-1) X
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LSTM — Internal recurrent state

c(t-1)

o Internal recurrent state
(“cell") ¢(t) combines
previous state c(t — 1)
and LSTM input g(t)

@ Gates - weights dependent
on the current input and
the previous state

v

ht) ------------

2\0( )

J >

9(t)

Win \Whz

——————————————— h(t-1) X
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LSTM — Input Gate

o Internal recurrent state
(“cell") ¢(t) combines
previous state c(t — 1)
and LSTM input g(t)

@ Gates - weights dependent
on the current input and
the previous state

h(t-1) --------- () ----mmmeeen -

o Input gate: controls how
much input to the unit
g(t) is written to the
internal state c(t)

oft-1) el

I(t; x(t), h(t-1))

———————————————— h(t-1) x(t)
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LSTM - Input and Forget Gate

c(t-1)

[ — -

Ft: x(0), ht-1)|

A 4el)

>

5

It x(®), h(t-1))

9

———————————————— h(t-1)

X(t)

Internal recurrent state
(“cell") ¢(t) combines
previous state c(t — 1)
and LSTM input g(t)

Gates - weights dependent
on the current input and
the previous state

Input gate: controls how
much input to the unit
g(t) is written to the
internal state c(t)
Forget gate: controls
how much of the previous
internal state c(t — 1) is
written to the internal
state c¢(t)
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LSTM — Input, Forget and Output Gates

h(t-1) ===~ [ — -

@ Output gate: controls
how much of each unit's
activation is output by the
hidden state — it allows
the LSTM cell to keep

(0, h(t-1) information that is not

relevant at the current

time, but may be relevant
later

F(t x(1), h(t-1))]

%

oft-1)

—

——————————————— h(t-1) X
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I(t) = o (Wix(t) + Wiph(t — 1) + b;)
F(t :J(fox( )—|— W g ht — 1)+bf)
t) = o (Woxx(t) + Wopnh(t — 1) + b,)

(t)
(t)
(t) =
g(t) = Wpex(t) + Wpph(t — 1) + by,
(t)
(t)

o

oft-1)
O

t) = F(t)oc(t— 1)+ 1(t) o (1)
t) = O(t) o tanh (¢(t))

Aovids the vanishing gradient problem of conventional RNNs

C Olah (2015), Understanding LSTMs, http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/
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Bidirectional RNN

Outputs s Y1 Yt Yt+1

Backward Layer 4— @ @
Forward Layer @ @ —>

Inputs cee Tpq Tt Tit1

ASR Lecture 12



Deep RNN

- Yt—1 Yt Yt+1 - - -

C L1 Lt L1 - - -
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Deep Bidirectional LSTM

A »\ A ‘\ A
e ]

NN
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Example: Deep Bidirectional LSTM Acoustic Model

(Switchboard)

@ LSTM has 4-6 bidirectional layers with 32,000 CD states )

Softmax

1024 cells/layer (512 each direction)

@ 256 unit linear bottleneck layer
@ 32k context-dependent state outputs 2% LE‘”‘*“ D

@ Input features

e 40-dimension linearly transformed wiﬁw

MFCCs (plus ivector)

e 64-dimension log mel filter bank C roeamisM )
features

(plus first and second derivatives)

e concatenation of of MFCC and FBANK ( 1024 Bi-LSTM )

features
@ Training: 14 passes frame-level C 1o24Bis™M )
cross-entropy training, 1 pass sequence
training (2 weeks on a K80 GPU) Acoustic Features
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Switchboard Results

Test Set WER/%

Network Architecture Switchboard CallHome
GMM (ML) 21.2 36.4
GMM (BMMI) 18.6 33.0
DNN (7x2048) / C 14.2 25.7
DNN (7x2048) / MMI 12.9 24.6
TDNN (6x1024) / CE 12,5

TDNN (6x576) / LF-MMI 9.2 17.3
LSTM (4x1024) 8.0 14.3
LSTM (6x1024) 7.7 14.0
LSTM-6 + feat fusion 7.2 12.7

GMM and DNN results — Vesely et al (2013); TDNN-CE results —
Peddinti et al (2015); TDNN/LF-MMI results — Povey et al (2016);
LSTM results — Saon et al (2017)

Combining models, and with multiple RNN language models, WER
reduced to 5.5/10.3% (Saon et al, 2017)
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Summary and Conclusions

@ Scaling DNNs for large vocabulary speech recognition

@ Context-dependent DNNs — use state clusters from CD
HMM/GMM as output labels — results in significant
improvements in accuracy for DNNs over GMMs

@ LSTM recurrent networks and TDNNs offer different ways to
model temporal context

e TDNN and/or LSTM systems are currently state-of-the-art
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@ A Maas et al (2017). “Building DNN acoustic models for
large vocabulary speech recognition”, Computer Speech and
Language, 41:195-213.
https://arxiv.org/abs/1406.7806

e V Peddinti et al (2015). “A time delay neural network
architecture for efficient modeling of long temporal contexts”,
Interspeech.

https://www.isca-speech.org/archive/interspeech_
2015/i15_3214 .html
Background Reading:

@ G Hinton et al (Nov 2012). “Deep neural networks for
acoustic modeling in speech recognition”, IEEE Signal
Processing Magazine, 29(6), 82-97.
http://ieeexplore.ieee.org/document/6296526

@ Hervé Bourlard (1992). “CDNN: A context-dependent neural
network for speech recognition”, Proc. ICASSP
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