### Introduction to Hidden Markov Models

Peter Bell

Automatic Speech Recognition— ASR Lecture 4 21 January 2021

#### Overview

#### **HMMs**

- Introduction to HMMs models
- HMMs for ASR
- Likelihood computation with the forward algorithm

# Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and W denotes a word sequence, the most likely word sequence  $W^{\ast}$  is given by

$$\mathsf{W}^* = \arg\max_{\mathsf{W}} P(\mathsf{W} \,|\, \mathsf{X})$$

# Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and W denotes a word sequence, the most likely word sequence  $W^*$  is given by

$$W^* = \arg\max_{W} P(W | X)$$

Applying Bayes' Theorem:

$$P(W|X) = \frac{p(X|W) P(W)}{p(X)}$$

$$\propto p(X|W) P(W)$$

$$W^* = \arg \max_{W} \underbrace{p(X|W)}_{\text{Acoustic}} \underbrace{P(W)}_{\text{Language}}$$

$$model \qquad model$$

NB: X is used hereafter to denote the output feature vectors from the signal analysis module rather than DFT spectrum.

## Acoustic Modelling



## Hierarchical modelling of speech



#### The Hidden Markov model

- A statistical model for time series data with a set of **discrete** states  $\{1, \ldots, J\}$  (we index them by j or k)
- At each time step t:
  - the model is in a fixed state  $q_t$ .
  - the model generates an observation, x<sub>t</sub>, according to a probability distribution that is specific to the state
- We don't actually observe which state the model is in at each time step – hence "hidden".
- Observations can be either continous or discrete (usually the former)

# HMM probabilities



- Imagine we know the state at a given time step t,  $q_t = k$
- Then the probability of being in a new state, j at the next time step, is dependent only on  $q_t$ . This is the **Markov** assumption.
- Alternatively:  $q_{t+1}$  is conditionally independent of  $q_1, \ldots, q_{t-1}$ , given  $q_t$ .

# HMM assumptions



Note that **observation independence** is an assumption that naturally arises from the model: the probability of  $x_t$  depends only on the state that generated it,  $q_t$ .

 The HMM topology determines the set of allowed transitions between states

- The HMM topology determines the set of allowed transitions between states
- In principle any topology is possible

- The HMM topology determines the set of allowed transitions between states
- In principle any topology is possible



- The HMM topology determines the set of allowed transitions between states
- In principle any topology is possible



Not all transition probabilities are shown

### Example topologies



left-to-right model



parallel path left-to-right model



ergodic model

$$\left(\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right)$$

$$a_{11}$$
 $a_{12}$ 
 $a_{13}$ 
 $a_{14}$ 
 $a_{15}$ 
 $a_{21}$ 
 $a_{22}$ 
 $a_{23}$ 
 $a_{24}$ 
 $a_{25}$ 
 $a_{31}$ 
 $a_{32}$ 
 $a_{33}$ 
 $a_{34}$ 
 $a_{35}$ 
 $a_{41}$ 
 $a_{42}$ 
 $a_{43}$ 
 $a_{44}$ 
 $a_{45}$ 
 $a_{51}$ 
 $a_{52}$ 
 $a_{53}$ 
 $a_{54}$ 
 $a_{55}$ 

Speech recognition: left-to-right HMM with  $3 \sim 5$  states

Speaker recognition: ergodic HMM

We generally model words or phones with a left-to-right topology with self loops.



Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)



Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)



Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)



The phone model topologies can be concatenated to form a HMM for the whole word

Traditional HMMs for ASR tend to model each phone with three distinct states (this also enforces a minimum phone duration of three frames of observations)



This model naturally generates an alignment between states and observations (and hence words/phones).

## Computing likelihoods with the HMM

Suppose we have a sequence of observations of length T,  $X=(x_1,\ldots,x_T)$ , and Q is a known state sequence,  $(q_1,\ldots,q_T)$ . Then we can use the HMM to compute the joint likelihood of X and Q:

$$P(X, Q; \lambda) = P(q_1)P(x_1|q_1)P(q_2|q_1)P(x_2|q_2)...$$
 (1)

$$= P(q_1)P(x_1|q_1)\prod_{t=2}^{r} P(q_t|q_{t-1})P(x_t|q_t) \qquad (2)$$

 $P(q_1)$  denotes the initial occupancy probability of each state

## HMM parameters

The parameters of the model,  $\lambda$ , are given by:

- Transition probabilities  $a_{kj} = P(q_{t+1} = j | q_t = k)$
- Observation probabilities  $b_j(x) = P(x|q=j)$

### The three problems of HMMs

Working with HMMs requires the solution of three problems:

**1 Likelihood** Determine the overall likelihood of an observation sequence  $X = (x_1, \dots, x_t, \dots, x_T)$  being generated by a known HMM topology,  $\mathcal{M}$ .

### The three problems of HMMs

Working with HMMs requires the solution of three problems:

- **Likelihood** Determine the overall likelihood of an observation sequence  $X = (x_1, \dots, x_t, \dots, x_T)$  being generated by a known HMM topology,  $\mathcal{M}$ .
- Oecoding and alignment Given an observation sequence and an HMM, determine the most probable hidden state sequence

### The three problems of HMMs

Working with HMMs requires the solution of three problems:

- **1 Likelihood** Determine the overall likelihood of an observation sequence  $X = (x_1, \dots, x_t, \dots, x_T)$  being generated by a known HMM topology,  $\mathcal{M}$ .
- Oecoding and alignment Given an observation sequence and an HMM, determine the most probable hidden state sequence
- Training Given an observation sequence and an HMM, find the state occupation probabilities

## Computing likelihood

- **1 Likelihood** Determine the overall likelihood of an observation sequence  $X = (x_1, \dots, x_t, \dots, x_T)$  being generated by a known HMM topology,  $\mathcal{M}$ .
  - $\rightarrow$  the forward algorithm

NB. We do **not** know the state sequence!

# Notes on the HMM topology

#### By the HMM topology, $\mathcal{M}$ , we can mean:

- A restricted left-to-right topology based on a known word/sentence, leading to a "trellis-like" structure over time
- A much less restricted topology based on a grammar or language model – or something in between
- Some algorithms are not (generally) suitable for unrestricted topologies

# Example: trellis for a 3-state phone HMM



• Goal: determine p(X | M)

- Goal: determine  $p(X | \mathcal{M})$
- Sum over all possible state sequences  $Q=(q_1,\ldots,q_T)$  that could result in the observation sequence  $\boldsymbol{X}$

$$\begin{split} p(\mathsf{X}|\mathcal{M}) &= \sum_{Q \in \mathcal{Q}} P(\mathsf{X}, Q|\mathcal{M}) \\ &= P(q_1) P(\mathsf{x}_1|q_1) \prod_{t=2}^T P(q_t|q_{t-1}) P(\mathsf{x}_t|q_t) \end{split}$$

- Goal: determine  $p(X | \mathcal{M})$
- Sum over all possible state sequences  $Q=(q_1,\ldots,q_T)$  that could result in the observation sequence  $\boldsymbol{X}$

$$\begin{split} \rho(\mathsf{X}|\mathcal{M}) &= \sum_{Q \in \mathcal{Q}} P(\mathsf{X}, Q|\mathcal{M}) \\ &= P(q_1) P(\mathsf{x}_1|q_1) \prod_{t=2}^T P(q_t|q_{t-1}) P(\mathsf{x}_t|q_t) \end{split}$$

• How many paths Q do we have to calculate?

$$\sim \underbrace{N \times N \times \cdots N}_{\text{$T$ times}} = N^{\text{$T$}} \qquad N: \text{ number of HMM states}$$

$$T: \text{ length of observation}$$

e.g. 
$$N^T \approx 10^{10}$$
 for  $N = 3$ ,  $T = 20$ 



- Goal: determine  $p(X | \mathcal{M})$
- Sum over all possible state sequences  $Q=(q_1,\ldots,q_T)$  that could result in the observation sequence  $\boldsymbol{X}$

$$\begin{split} \rho(\mathsf{X}|\mathcal{M}) &= \sum_{Q \in \mathcal{Q}} P(\mathsf{X}, Q|\mathcal{M}) \\ &= P(q_1) P(\mathsf{x}_1|q_1) \prod_{t=2}^T P(q_t|q_{t-1}) P(\mathsf{x}_t|q_t) \end{split}$$

• How many paths Q do we have to calculate?

$$\sim \underbrace{N \times N \times \cdots N}_{T \text{ times}} = N^{T} \qquad N : \text{ number of HMM states}$$
$$T : \text{ length of observation}$$

e.g. 
$$N^T \approx 10^{10} \text{ for } N = 3, T = 20$$

• Computation complexity of multiplication:  $O(2TN^T)$ 

# Likelihood: The Forward algorithm

#### The **Forward algorithm**:

 Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)

# Likelihood: The Forward algorithm

#### The **Forward algorithm**:

- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Reduces the computational complexity to  $O(TN^2)$

# Likelihood: The Forward algorithm

#### The **Forward algorithm**:

- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Reduces the computational complexity to  $O(TN^2)$
- Visualise the problem as a state-time trellis



# The forward probability

Define the *Forward probability*,  $\alpha_t(j)$ : the probability of observing the observation sequence  $x_1 \dots x_t$  and being in state j at time t:

$$\alpha_j(t) = p(\mathsf{x}_1,\ldots,\mathsf{x}_t,q_t=j\,|\,\mathcal{M})$$

We can recursively compute this probability

### Initial and final state probabilities

It what follows it is convenient to define:

• an additional single initial state  $S_I = 0$ , with transition probabilities

$$a_{0j}=P(q_1=j)$$

denoting the probability of starting in state j

- a single final state,  $S_E$ , with transition probabilities  $a_{jE}$  denoting the probability of the model terminating in state j.
- $S_I$  and  $S_E$  are both non-emitting

#### Likelihood: The Forward recursion

Initialisation

$$\alpha_j(0) = 1 \qquad j = 0$$
 $\alpha_j(0) = 0 \qquad j \neq 0$ 

Recursion

$$\alpha_j(t) = \sum_{i=1}^J \alpha_i(t-1)a_{ij}b_j(\mathsf{x}_t) \qquad 1 \leq j \leq J, \ 1 \leq t \leq T$$

Termination

$$p(X|\mathcal{M}) = \alpha_E = \sum_{i=1}^{J} \alpha_i(T) a_{iE}$$

 $s_I$ : initial state,  $s_E$ : final state

#### Likelihood: Forward Recursion

$$\alpha_j(t) = p(\mathsf{x}_1, \dots, \mathsf{x}_t, q_t = j | \mathcal{M}) = \sum_{i=1}^J \alpha_i(t-1) a_{ij} b_j(\mathsf{x}_t)$$



#### Next

#### More HMM algorithms

- Finding the most likely path with the Viterbi algorithm
- Parameter estimation:
  - the Forward-Backward algorithm
  - the Expectation-Maximisation algorithm

#### References: HMMs

- Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", Foundations and Trends in Signal Processing, 1 (3), 195–304: section 2.2.
- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): sections 6.1-6.5; 9.2; 9.4. (Errata at http://www.cs.colorado.edu/~martin/SLP/Errata/ SLP2-PIEV-Errata.html)
- Rabiner and Juang (1989). "An introduction to hidden Markov models", IEEE ASSP Magazine, 3 (1), 4–16.
- Renals and Hain (2010). "Speech Recognition",
   Computational Linguistics and Natural Language Processing Handbook, Clark, Fox and Lappin (eds.), Blackwells.