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Recap — CTC

@ Adds a blank (€) symbol to the output labels

@ A deep LSTM (for example) maps input sequence X (length
T) to a label sequence C (length T)

@ Use CTC compression rule (merge adjacent repeated symbols,
then remove blanks) to produce subword sequence S (length
M<T)

@ CTC loss function computes the probability P(S)|X by
summing over all possible valid alignments P(C|X)
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CTC Model

P(si|X) ... P(sulX)
View CTC as having three components:

e Encoder: Deep (bidirectional) cTC
LSTM recurrent network which ry
maps acoustic features PelX) - Pler|X)
X = x1,...,XT to a sequence of
hidden vectors @max
he"C = h$"C .. hS"C 7y

@ Softmax: Computes the label pene
probabilities
P(e1]X), ..., P(er|X) Encoder

e CTC: Computes the subword
sequence P(s1|X),...,P(sm|X)

i
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Limitations of CTC

e CTC - pros
e Can train end-to-end without requiring framewise alignments
e Sums over all possible alignments (using forward-backward)
e Preserves monotonic relationship between acoustic frames and
output labels

ASR Lecture 16 4



Limitations of CTC

e CTC — pros

e Can train end-to-end without requiring framewise alignments

e Sums over all possible alignments (using forward-backward)

e Preserves monotonic relationship between acoustic frames and
output labels

@ CTC - cons

e Assumes output predictions at different times are independent

e Requires additional language and pronunciation models to
introduce dependencies between output labels

e Incorporation of language models is typically ad-hoc

e End-to-end training of CTC models (also of LF-MMI models)
updates the acoustic model parameters using a sequence level
criterion, but does not update the pronunciations or language
models
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RNN Transducer Model

o Encoder: Acoustic model network
mapping acoustic features

X = x1,...,x71 to hidden vectors
enc enc enc
h :hl 7...7h'r .

P(s1]X) P(sy|X)

@ Prediction network: Recurrent e

network which takes the previous PleX) - PleriX)
output subword label s, 1 as input @@
and predicts the next subword label
p, — acts as a language model
(over subwords) (_ Jointnework )

o Joint network: Computes a joint P ngne
hidden vector Z = z1,...,z7 by a
applying a shallow feed-forward net <
to h®" and P, o T T

@ Followed by softmax and CTC
components as before
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RNN Transducer Model

@ RNN transducer can operate left-to-right is a
frame-synchronous manner (if the encoder is a unidirectional
LSTM)

@ Acoustic model (encoder) and language model (prediction
network) parts are modelled independently and combined in
the joint network. However everything is optimised to a
common sequence-level objective (using the CTC loss
function).

e With sufficient training data, additional language and
pronunciation models are not necessary ( )

@ The recently announced Google “all-neural” on-device speech
recognition uses unidirectional RNN transducers
https://ai.googleblog.com/2019/03/

an-all-neural-on-device-speech.html
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Attention-based Encoder-Decoder Model

@ Encoder: Acoustic model using a
recurrent network to map acoustic

features X = x1,...,x7 to hidden
vectors h®"¢ = "¢ ... K"

@ Decoder: Computes distribution @max )
over labels conditioned on
previously predicted labels and the

acoustics, P(sy|sy-1,--., S0, X) ( Decoder )

@ Attention: Constructs a context
vector for the decoder network
based on attention weights @ >
computed over all frames in the
encoder output

o Google's “Listen, Attend, and Encoder
Spell” model: Chan et al (2016),
ICASSP.

P(8u[$u-1- -, 50, X)

pdec

enc
hy
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https://ieeexplore.ieee.org/abstract/document/7472621
https://ieeexplore.ieee.org/abstract/document/7472621

The Decoder

@ The decoder directly generates the output subword sequence

S

@ At each decoding time step u, the decoder RNN uses the

previous output s,_1, the previous decoder RNN hidden state
hdec

u—1, and the previous context vector ¢,_; to generate the

current decoder hidden state hf,iec
hdec — RNN(hZ®S, s, 1, €4o1)

@ The context vector is computed by the attention mechanism
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The Attention Mechanism

The attention mechanism uses the current decoder RNN
hidden state hﬂ?‘i, and the sequence of encoder hidden states
h®"C to compute an alignment matrix cv;:

ayr = Attention(hgec, hE")

The alignment vector is used as weights in a weighted sum of
the encoder hidden states to compute the context vector c,:

T
E enc

C, = O[utht
t=1

The decoder uses the context vector ¢, and the current
decoder hidden state hgec to estimate the subword
distribution:

s, ~ LabelDistribution(c,,, h9€°)

where LabelDistribution is a single layer neural network with a

softmax output over the labels.
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Alignment Vector

@ Attention models the alignment between the current output
s, and the input sequence x — it matches the “input clock”
with the “output clock”

@ Various ways to compute the attention - content-based
attention commonly used. Single hidden layer followed by a
softmax

eue = v tanh(WhIEC 1 vRENC | p)

exp(eut)
>k &xP(euk)

Qut =
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Alignment between labels and acoustics

Alignment between the Characters and Audio

“How much would a woodchuck chuck”
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Attention Mechanism
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Attention Mechanism
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Pyramid Encoder

@ A significant problem with a naive end-to-end model is the
length of the input sequences... A direct BLSTM encoder can
be difficult and slow to train — hard to extract the relevant
information from many time steps

@ Use a pyramid architecture — each successive layer reduces the
resolution by a factor of 2.

o Typical deep BLSTM hidden state (layer j, time t):
b, = RNN(H,™" hr_y)
e Pyramid model concatenates consecutive hidden states:
W, = pyrRNN([h, ., 1y, 1)

e 3 layers in a pyramid architecture reduces the time resolution
(shortens the sequence) by a factor of 8

e The attention mechanism thus has an easier job, weighting
over 8x fewer encoder hidden states
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@ Model trained to maximise the log probability of correct
sequences

Z log P(su|x, s<u)

where s, is the sequence s1,...,5,_1
@ An interesting subtlety: what value should be used for s,?

e The previous predictions? this is consistent between training
and test, but adds noise at training time
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@ Model trained to maximise the log probability of correct
sequences

Z log P(su|x, s<u)

where s, is the sequence s1,...,5,_1
@ An interesting subtlety: what value should be used for s,?
e The previous predictions? this is consistent between training
and test, but adds noise at training time
e The ground truth labels (teacher forcing)? This speeds up
learning, especially early on, but there is a mismatch between
training and testing
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@ Model trained to maximise the log probability of correct
sequences

Z log P(su|x, s<u)

where s, is the sequence s1,...,5,_1
@ An interesting subtlety: what value should be used for s,?

e The previous predictions? this is consistent between training
and test, but adds noise at training time

e The ground truth labels (teacher forcing)? This speeds up
learning, especially early on, but there is a mismatch between
training and testing

o Scheduled sampling? Sample a label from the estimated
distribution. This reduces the noise in training, but doesn't
create a big gap between training and test
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Decoding and Rescoring

@ Decode without a separate pronunciation model or an external
language model!

@ Simply decode the grapheme sequence! (It is possible to
rescore with a language model if desired)

@ Decoding use a beam search in which 15-best hypotheses are
retained at each decoding step
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Results (2017)

Google Voice Search data, 12,500h training data, 15M
hand-transcribed utterances

Clean Noisy .

Model T [ 7S Tt [ 7S numeric
Baseline Uni. CDP 6.4 9.9 8.7 14.6 11.4
Baseline BiDi. CDP 5.4 8.6 6.9 - 11.4

End-to-end systems
CTC-grapheme® 394 [ 534 ] - -
RNN Transducer 6.6 12.8 | 85 | 22.0 9.9

RNN Trans. with att. | 6.5 125 | 84 | 215 9.7
Att. 1-layer dec. 6.6 11.7 | 87 | 20.6 9.0
Att. 2-layer dec. 63 | 11.2 | 81 | 19.7 8.7

Prabhavalkar et al (2017), “A Comparison of Sequence-to-Sequence Models for
Speech Recognition”, Interspeech. https://www.isca-speech.org/archive/
Interspeech_2017/abstracts/0233.html
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Other Refinements

@ Wordpiece models — rather than using single graphemes as
labels use multi-grapheme units (up to a word in length) -
similar to bye pair encoding in machine translation

@ Multiheaded attention — use multiple attention distributions

@ Minimum WER training — modify the loss function to
interpolate a word error rate term

@ Label smoothing — smooth the ground truth distribution by
interpolating with a uniform distribution

@ LM rescoring — use an external language model (5-gram)
trained on large amount of text

Reduced WER on Voice Search from 9.2% to 5.6% — their hybrid
HMM-LSTM system has WER of 6.7% on this task

Chiu et al, “State-of-the-art sequence recognition with sequence-to-sequence
models”, ICASSP 2018. https://arxiv.org/abs/1712.01769
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Hybrid CTC/Attention

@ Attention is very flexible — does not constrain relationship
between acoustics and labels to be monotonic

@ This can be a problem, especially when huge amounts of
training data not available
@ Possible solutions:
e Windowed attention, in which the attention is restricted a set
of encoder hidden states
o Hybrid CTC/Attention model - use CTC and attention jointly
during training and recognition — regularises the system to
favour monotonic alignments
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Hybrid CTC/Attention

CTC

Attention
Decoder

Shared h,
Encoder

Watanabe et al (2017), “Hybrid CTC/Attention Architecture for End-to-End
Speech Recognition”, IEEE STSP, 11:1240-1252.
https://ieeexplore.ieee.org/document/8068205
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End-to-end models for speech recognition: CTC, RNN
Transducer, Attention Encoder-Decoder

RNN Transducer and Attention-based model integrate
acoustic model, pronunciation model, and language model
into a single neural network

With large amounts of hand-transcribed training data,
attention-based model can be more accurate than
context-dependent NN/HMM

RNN transducer can operate in online (left-to-right) mode
Attention based model operates over an utterance at a time
(since attention is over the complete encoded utterance)

Very active research area! Eg. recent use of self-attention
(Transformer) in place of recurrent architectures
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