
v. 1.2

Lab 2: Training monophone models

University of Edinburgh

January 28, 2019

Last time we got familiar with some of Kaldi’s tools, we set up a data direc-
tory for TIMIT and extracted features. This time we will train Hidden Markov
Model-Gaussian Mixture Model (HMM-GMM) systems on top of those features.
Commands that you should run are in a box with a red border, and notes in a
box with a blue border:

Code to execute will appear in red boxes.

Notes will appear in blue boxes.

1 Building an acoustic model

Let’s begin by opening a terminal window and cd to your workdir:

cd ~/asrworkdir

source path.sh

Before we start building the HMM-GMM models run the following script to
check that you have the necessary files from the previous lab:

./local/lab1_check.sh

If that says everything is fine then continue to the next step.

1.1 Monophone models

Let’s start training a monophone system. Kaldi has a script called steps/train mono.sh.
If we run it without any arguments we get the following usage message:

Usage: steps/train_mono.sh [options] <data-dir> <lang-dir> <exp-dir>

1

Kaldi needs a data directory and a language directory, and will store the model
in the experiment directory. Plugging in for those, run the following command:

steps/train_mono.sh --nj 4 data/train data/lang exp/mono

The option --nj 4 instructs Kaldi to split computation into four parallel
jobs. This can significantly reduce computation time, but only as long
as there are at least equal number of processor cores which are not in use.

To monitor running processes, try using top or htop in a second terminal
window. While running the monophone training you should see at least
four running programmes.

Building the monophone system may take a while, so open another terminal
window and cd again to the workdir:

cd ~/asrworkdir

source path.sh

A folder we didn’t look at much last time was the language directory, data/lang.
Let’s begin to have a look at the phones that are defined in our model:

less data/lang/phones.txt

How many phones have we defined in our model? (hint: use wc)
Similarly, the following file lists the words in our language model.

less data/lang/words.txt

They should look very similar. With TIMIT we are aiming to perform phone
recognition. Normally in Kaldi we would do word recognition, and there would
be words in words.txt instead. In this case, however, the “words” are phones.

Next, have a look at the topology:

less data/lang/topo

This sets out normal three-state HMMs per phone. The transition probabil-
ities are defined after the <Transition> tags.

2

Recall from the lectures how we use HMMs and GMMs to model the data.
Relate this figure to the topology and the acoustic model generated in
Kaldi.

s1
aS,1

a1,1

s2
a1,2

a2,2

s3
a2,3

a3,3

a3,E

x

p(x)

Compare the topology to the phones we just looked at. Which phone has
a different topology? How is it different? Can you relate the topology to the
figure above?

By now the initial monophone model should have been written. Inspect it
by running the following command:

gmm-copy --binary=false exp/mono/0.mdl - | less

The top should look familiar. Underneath the topology there will be a
<Triples> tag. This maps each phone and one of its three states to a unique
number. That is, there are num phones × num states = 144 triples. Scroll
down a few hundred lines more until you see tags such as <DiagGMM>. Can you
work out what kind of information is stored here? How does it relate to the
Triples in the topology? (How many PDFs are there?)

Last time we mentioned that binaries that take read or write specifiers,
such as ark:, write in binary by default unless you append the ,t flag
(e.g. ark,t:). For binaries that read normal files, you instead provide
the flag --binary=false, as above.

To get a summary of the information in the initial acoustic model, write

3

gmm-info exp/mono/0.mdl

When the monophone models are finished training, have a look at the final
trained model:

gmm-info exp/mono/final.mdl

What has changed?
We can have a look at some of the mixture Gaussians by running:

gmm-copy --binary=false exp/mono/final.mdl - |\

/usr/bin/python2.7 local/plot_gmm.py -

Note the backslash at the end of the line: \ . This allows you to write
bash expressions over multiple lines and can help readability in scripts.

If you get errors that you are missing a Python library, you can install
these libraries by running:

pip install --user numpy scipy matplotlib

You should see something similar to Figure 1. These are the Gaussian Mix-
ture Model densities corresponding to the first twelve cepstral coefficients for
one of the states in the model.

This is a good time to dig a little bit deeper into the scripts. Have a look at
the monophone training script:

less steps/train_mono.sh

At the top there are listed some default parameters. About halfway through
there’s a parameter called totgauss. This sets the upper limit of the number of
Gaussians to include in the final trained model. Search for the string gmm-est

by typing (within less):

/gmm-est

This is the command that actually estimates the GMMs. Notice that the
script is passing in a mix-up parameter, which is based upon the totgauss

variable above. Leave less by pressing q.

When you’re using less to look at a file, you can search for text in that
file by typing / followed immediately by the string you’re interested in
and hitting enter. Press n repeatedly to loop through all occurrences of
the search string.

4

c0 c1 c2

c3 c4 c5

c6 c7 c8

c9 c10 c110.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

m
a
g
n
it

u
d
e

Figure 1: GMMs for the first 12 cepstral coefficients for a random density.

Lets start decoding our monophone model. Run the following commands:

utils/mkgraph.sh --mono data/lang_test_bg exp/mono exp/mono/graph

steps/decode.sh --nj 4 \

exp/mono/graph data/test exp/mono/decode_test

While we’re decoding, in the other window, we’ll look at the alignments
from our monophone model. The alignments are stored compressed using gzip.
Note that in the below command we unzip them and pipe them directly in as
the read specifier. We then apply the ,t tag to get readable output from the
write specifier and finally we output only the first line.

convert-ali --reorder=false exp/mono/final.mdl \

exp/mono/final.mdl exp/mono/tree \

ark:"gunzip -c exp/mono/ali.1.gz |" ark,t:- | head -1

These numbers are called transition-ids. To see how they relate to our model,
type

show-transitions data/lang/phones.txt exp/mono/0.mdl

Can you see how this relates to the topology we looked at above? What

5

happens if you look at the final trained model compared to the initial (0) model?
That is, try the following command and compare the output to the previous
command:

show-transitions data/lang/phones.txt exp/mono/final.mdl

What has changed?
We can combine this information and display it in a more friendly way. Type

the following command:

show-alignments data/lang/phones.txt exp/mono/final.mdl \

"ark:gunzip -c exp/mono/ali.1.gz |" | head -n 2

The first line now contains the same transition ids, but grouped in a partic-
ular way (how?). The second line shows the phones.

(It is perfectly fine to skip this box)

Above we used the command convert-ali to view the alignments stored
in ali.1.gz. However, if we just wanted to see exactly what was in the
file, we could have just used:

copy-int-vector "ark:gunzip -c exp/mono/ali.1.gz|" \

ark,t:- | head -n 1

Note that the output is different:

2 4 3 3 3 3 3 3 6 5 5 5 5

compared to

2 3 3 3 3 3 3 4 5 5 5 5 6

Here, id 4 indicates a transition from state 1 to 2, and id 3 indicates a self-
loop in state 1. So in the first example we transition to state 2, and then
perform a self-loop in state 1. Kaldi reorders transition probabilities,
effectively placing the current state’s self-loops at the end of the forward
transition to the next state. This is done to optimise decoding later on,
but doesn’t affect the actual probabilities or results.

1.2 Decoding

Above we set off some jobs creating a graph and decoding the model. For
this we’re using a slightly different language directory which contains a bigram
model of the phones, stored in data/lang test bg/G.fst. The first command
above (utils/mkgraph.sh) combines the HMM structure in the trained model,
any Context dependency, the Lexicon and the Grammar - collectively termed

6

HCLG - and creates a decoding graph in the form of a Finite State Transducer
(FST)1. The second script generates lattices of word (phone) sequences for the
data given the model, which we then score.

grep Sum exp/mono/decode_test/score_*/*.sys | utils/best_wer.sh

What Phone Error Rate (PER) does the monophone model achieve on
TIMIT? Note that Kaldi typically reports Word Error Rates, which is why
the output says WER.

We’re done! Next time we’ll look at triphone and hybrid neural network
models.

1.3 Appendix: Common errors

• Forgot to source path.sh, check current path with echo $PATH

• No space left on disk: check df -h

• No memory left: check top or htop

• Lost permissions reading or writing from/to AFS: run kinit && aklog.
To avoid this, run long jobs with the longjob command.

• Syntax error: check syntax of a Bash script without running it using bash

-n scriptname

• Avoid spaces after \when splitting Bash commands over multiple lines

• Optional params:

• command line utilities: --param=value

• shell scripts: --param value

• Most file paths are absolute: make sure to update the paths if moving
data directories

• Search the forums: http://kaldi-asr.org/forums.html

• Search the old forums: https://sourceforge.net/p/kaldi/discussion

1.4 Appendix: UNIX

• cd dir - change directory to dir, or the enclosing directory by ..

• cd - - change to previous directory

• ls -l - see directory contents

1[1] is a good, related paper on FSTs in speech recognition.

7

• less script.sh - view the contents of script.sh

• head -l and tail -l - show first or last l lines of a file

• grep text file - search for text in file

• wc -l file - compute number of lines in file

References

[1] Mehryar Mohri, Fernando Pereira, and Michael Riley. Speech recognition
with weighted finite-state transducers. In Springer Handbook of Speech Pro-
cessing, pages 559–584. Springer, 2008.

8

