Speaker verification

Steve Renals

Automatic Speech Recognition – ASR Lecture 17 18 March 2019

= 900

イロト 人間 ト イヨト イヨト

- Speaker identification determine which of the set of enrolled speakers a test speaker matches
- Speaker verification determine if a test speaker matches a specific speaker
- Speaker diarization "who spoke when" segment and label a continuous recording by speaker

ъ.

(a)

- Speaker identification determine which of the set of enrolled speakers a test speaker matches
- Speaker verification determine if a test speaker matches a specific speaker
- **Speaker diarization** (next lecture) "who spoke when" segment and label a continuous recording by speaker

ъ.

(a)

- Speaker identification determine which of the set of enrolled speakers a test speaker matches
- Speaker verification determine if a test speaker matches a specific speaker
- **Speaker diarization** (next lecture) "who spoke when" segment and label a continuous recording by speaker
- Text dependent (vs text independent) for speaker identification and verification, is the test speaker speaking a pre-defined utterance?
 - text-dependent e.g. spoken password
 - text-independent e.g. recognise a speaker from a law-enforcement recording
- Closed set (vs open set) is there a fixed set of speakers?

イロン 不通 と イヨン イヨン ニヨー

Speaker verification

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Overview of a speaker verification system

Source: Hansen and Hasan, 2015

イロト イポト イヨト イヨト

Evaluating speaker verification

- Two types of error
 - False acceptance grant access to an imposter: False Acceptance Rate (FAR)
 - False reject refuse access to a genuine speaker: False Rejection Rate (FRR)

FAR = False Alarm Probability

Number of imposters accepted

Number of imposter attempts

 $\mathsf{FRR} = \mathsf{Miss}$ Probability

Number of legitimate speakers rejected

Number of legitimate attempts

- Control the levels of these errors by setting decision threshold
- Equal error rate FAR and FRR values when they are equal
- DET (detection error tradeoff) curve plots FRR (miss probability) against FAR (false alarm probability)

Speaker verification decision threshold

Source: Hansen and Hasan, 2015

3

イロト 人間 トイヨト イヨト

DET curve

Source: Hansen and Hasan, 2015

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Detection cost function takes into account
 - Cost of miss (C_{miss}) and false alarm (C_{FA}) errors
 - Prior probability of target speaker P_{target})
 - Miss probability at threshold $\tau P_{\text{miss}}(\tilde{\tau})$
 - FA probability at threshold $\tau P_{FA}(\tau)$

 $DCF(\tau) = C_{\text{miss}}P_{\text{miss}}(\tau)P_{\text{target}} + C_{\text{FA}}P_{\text{FA}}(\tau)(1 - P_{\text{target}})$

• Set $C_{miss} > C_{FA}$ if it is better to have false alarms than it is to miss the target speaker (e.g. law enforcement applicationa)

ъ.

・ロッ ・雪 ・ ・ ヨ ・

- Frame-level typically use MFCCs or other features used in ASR
- Utterance/speaker-level since we require to make decisions at the utterance level often aim to learn utterance level representations or embeddings
 - GMM supervectors
 - i-vectors
 - DNN embeddings
 - d-vectors
 - x-vectors

э.

イロト イヨト イヨト

GMM-based speaker verification

- UBM (Universal Background Model) train a GMM with many Gaussians (eg 2048) on the speech of the general population
 - NB: no sequence modelling (no HMM) just a distribution over MFCCs
- Then adapt the UBM to each target speaker using MAP adaptation
- Directly use these GMMs to verify a target speaker using the log likelihood ratio (LLR), where X is the observed test utterance, θ_s is the target speaker model, and θ_0 is the UBM. :

$$LLR(X,s) = \log rac{p(X| heta_s)}{p(X| heta_0)} = \log p(X| heta_s) - \log p(X| heta_0)$$

For a threshold $\boldsymbol{\tau}$

- If $LLR(X, s) \ge \tau$ then accept
- If $LLR(X, s) < \tau$ then reject

(a)

Recap: MAP adaptation

- Basic idea MAP adaptation balances the parameters estimated on the universal data with estimates from the target speaker
- Consider the mean of the *m*th Gaussian, μ_m
 - ML estimate of SI model:

$$\boldsymbol{\mu}_m = \frac{\sum_n \gamma_m(n) \mathbf{x}_n}{\sum_n \gamma_m(n)}$$

where $\gamma_m(n)$ is the component occupation probability

イロト イヨト イヨト

Recap: MAP adaptation

- Basic idea MAP adaptation balances the parameters estimated on the universal data with estimates from the target speaker
- Consider the mean of the *m*th Gaussian, μ_m
 - ML estimate of SI model:

$$\boldsymbol{\mu}_m = \frac{\sum_n \gamma_m(n) \mathbf{x}_n}{\sum_n \gamma_m(n)}$$

where $\gamma_m(n)$ is the component occupation probability

• MAP estimate for the adapted model:

$$\hat{\boldsymbol{\mu}} = \frac{\alpha \boldsymbol{\mu}_0 + \sum_n \gamma(n) \boldsymbol{\mathsf{x}}_n}{\alpha + \sum_n \gamma(n)}$$

- lpha controls balances the SI estimate and the adaptation data (typically 0 $\leq lpha \leq$ 20)
- **x**_n is the adaptation vector at time n
- $\gamma(n)$ the probability of this Gaussian at this time

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Recap: MAP adaptation

- Basic idea MAP adaptation balances the parameters estimated on the universal data with estimates from the target speaker
- Consider the mean of the *m*th Gaussian, μ_m
 - ML estimate of SI model:

$$\boldsymbol{\mu}_m = \frac{\sum_n \gamma_m(n) \mathbf{x}_n}{\sum_n \gamma_m(n)}$$

where $\gamma_m(n)$ is the component occupation probability

• MAP estimate for the adapted model:

$$\hat{\boldsymbol{\mu}} = \frac{\alpha \boldsymbol{\mu}_0 + \sum_n \gamma(n) \boldsymbol{\mathsf{x}}_n}{\alpha + \sum_n \gamma(n)}$$

- lpha controls balances the SI estimate and the adaptation data (typically 0 $\leq lpha \leq$ 20)
- **x**_n is the adaptation vector at time n
- $\gamma(n)$ the probability of this Gaussian at this time
- As the amount of training data increases, MAP estimate converges to ML estimate

GMM UBM system

Source: Hansen and Hasan, 2015

æ

・ロト ・回ト ・ヨト ・ヨト

i-Vectors

- Represent a speaker using the GMM (mean) parameters concatenate the target speaker mean parameters to form a **GMM supervector** m_s . Typical dimension of a UBM GMM is 2048, so with 39-dimension parameters, this can be a very high dimension vector (\sim 80,000 components)
- Represent the supervector for an utterance X_u as the combination of the UBM supervector and the utterance **i-vector** (Dehak et al, 2011):

$$\boldsymbol{m}_u = \boldsymbol{m}_0 + \boldsymbol{T} \boldsymbol{w}_u$$

- \boldsymbol{m}_u and \boldsymbol{m}_0 are *D*-dimension supervectors for the utterance *u* and the UBM
- *w_u* is the *i-vector* ("identity vector") a reduced dimension (*d*) representation for utterance u (*d* ~ 400)
- **T** is a $D \times d$ matrix (sometimes called the "total variability matrix") which projects the supervector down to the i-vector representation
- Estimate T for the development corpus using an EM algorithm, estimate the i-vector w_u for an utterance as the mean of the (Gaussian) posterior distribution of w_u given X_u and T.

Speaker verification scoring using i-vectors

- Speaker verification involves computing a score f(w_{target}, w_{test}) between the target and test i-vectors
- Cosine score

$$f_{cos}(\boldsymbol{w}_{target}, \boldsymbol{w}_{test}) = rac{\boldsymbol{w}_{target} \cdot \boldsymbol{w}_{test}}{||\boldsymbol{w}_{target}|| \, ||\boldsymbol{w}_{test}||}$$

• Probabilistic linear discriminant analysis (PLDA) – probabilistic model that accounts for speaker variability and channel variability. Can be used to compute the log likelihood ratio, so

$$f_{\mathsf{plda}}(m{w}_{\mathsf{target}},m{w}_{\mathsf{test}}) = \log p(m{w}_{\mathsf{target}},m{w}_{\mathsf{test}}|H_1) - \log \left[p(m{w}_{\mathsf{target}}|H_0) p(m{w}_{\mathsf{test}}|H_0)
ight]$$

where H_1 is the hypothesis that the test and target speakers are the same, H_0 is the hypothesis they are different

• PLDA is current-state of the art for scoring i-vectors

イロト イヨト イヨト

- Current state-of-the-art neural network approaches use NNs to extract embeddings, which are then scored by PLDA
- d-vectors (Variani et al, 2014)
 - Development train a DNN to recognise speakers
 - Enrolment extract speaker-specific features from last hidden layer
 - d-vector average speaker-specific features across frames of an utterance (pooling)
- x-vectors (Snyder et al, 2018)
 - Similarly to d-vectors extract an utterance level feature as an embedding
 - Train TDNN with frame-level input and utterance-level output
 - Architecture includes a "stats pooling" layer which computes mean and sd across the utterance of the highest frame-level hidden layer

イロン 不通 と イヨン イヨン ニヨー

d-vector extraction

Source: Variani et al, 2014

э.

x-vector extraction

Layer	Layer context	Total context	Input x output
frame1	[t-2, t+2]	5	120x512
frame2	$\{t-2, t, t+2\}$	9	1536x512
frame3	$\{t-3, t, t+3\}$	15	1536x512
frame4	$\{t\}$	15	512x512
frame5	$\{t\}$	15	512x1500
stats pooling	[0,T)	T	1500Tx3000
segment6	$\{0\}$	T	3000x512
segment7	{0}	T	512x512
softmax	$\{0\}$	T	512xN

Source: Snyder et al, 2018

æ.,

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- i-vectors are the state-of-the-art speaker representation, used in
 - speaker recognition
 - speaker diarization
 - speaker adaptation in ASR
- NN speaker representations such as d-vectors and x-vectors are now competitive with i-vectors
- PLDA is the state-of-the-art scoring approach
- Current challenges include development of end-to-end NN approaches

イロト イポト イヨト イヨト

Reading

- JHL Hansen and T Hasan (2015), "Speaker Recognition by Machines and Humans: A tutorial review", *IEEE Signal Processing Magazine*, 32(6):74–99, https://ieeexplore.ieee.org/document/7298570
- MW Mak and JT Chien (2016), "Tutorial on Machine Learning for Speaker Recognition", Interspeech,

http://www.eie.polyu.edu.hk/~mwmak/papers/IS2016-tutorial.pdf

- N Dehak et al (2011), "Front-End Factor Analysis for Speaker Verification", IEEE Trans Audio, Speech, and Language Processing, 19(4):788-798, https://ieeexplore.ieee.org/document/5545402
- E Variani et al (2014), "Deep neural networks for small footprint text-dependent speaker verification", ICASSP,

https://ieeexplore.ieee.org/document/6854363

• D Snyder et al (2018), "X-Vectors: Robust DNN Embeddings for Speaker Recognition", ICASSP,

https://ieeexplore.ieee.org/document/8461375

・ コット (雪) ・ (目) ・ (目)