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End-to-end systems

@ End-to-end systems are systems which learn to directly map from an input
sequence X to an output sequence Y, estimating P(Y|X)
e Y can be a sequence of words or subwords

e ML trained HMMs are kind of end-to-end system — the HMM estimates P(X|Y),
and when combined with a language model gives an estimate of P(Y|X)
@ Sequence discriminative training of HMMs (using GMMs or DNNs) can be
regarded as end-to-end
o But training is quite complicated — need to estimate the denominator (total
likelihood) using lattices, first train conventionally (ML for GMMs, CE for NNs) then
finetune using sequence discriminative training
o Lattice-free MMI is one way to address these issues
@ Other approaches based on recurrent networks which directly map input to output
sequences
e CTC — Connectionist Temporal Classification
e Encoder-decoder approaches
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Deep Speech

Output: character probabilities (a-z, <apostrophe>, <space>, <blank>)
Trained using CTC

Softmax output layer

Bidirectional recurrent
hidden layer

3 feed-forward
hidden layers

P |

Input: Filter bank features (spectrogram)

Hannun et al (2014), “Deep Speech: Scaling up end-to-end speech recognition”,

https://arxiv.org/abs/1412.5567.
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Deep Speech: Results

Model SWB CH Full
Vesely et al. (GMM-HMM BMMI) [44] 18.6 33.0 258
Vesely et al. (DNN-HMM sMBR) [44] 126 241 184
Maas et al. (DNN-HMM SWB) [28] 146 263 20.5
Maas et al. (DNN-HMM FSH) [28] 16.0 237 199
Seide et al. (CD-DNN) [39] 16.1 n/a n/a
Kingsbury et al. (DNN-HMM sMBR HF) [22] 13.3 n/a n/a
Sainath et al. (CNN-HMM) [36] 1.5 n/a n/a
Soltau et al. (MLP/CNN+I-Vector) [40] 10.4 n/a  n/a
Deep Speech SWB 20.0 31.8 259
Deep Speech SWB + FSH 126 193 16.0

Table 3: Published error rates (% WER) on Switchboard dataset splits. The columns labeled “SWB”
and “CH” are respectively the easy and hard subsets of Hub5’00.

ASR Lecture 15 4



Deep Speech Training

@ Maps from acoustic frames X to subword sequences S, where S is a sequence of
characters (in some other CTC approaches, S can be a sequence of phones)

@ CTC loss function
o Makes good use of large training data
e Synthetic additional training data by jittering the signal and adding noise

@ Many computational optimisations
@ n-gram language model to impose word-level constraints

@ Competitive results on standard tasks

ASR Lecture 15 5



Deep Speech Training

@ Maps from acoustic frames X to subword sequences S, where S is a sequence of
characters (in some other CTC approaches, S can be a sequence of phones)

@ CTC loss function
o Makes good use of large training data
e Synthetic additional training data by jittering the signal and adding noise

@ Many computational optimisations
@ n-gram language model to impose word-level constraints

@ Competitive results on standard tasks

ASR Lecture 15 5



Connectionist Temporal Classification

@ Train a recurrent network to map from input sequence X to output sequence S
e sequences can be different lengths — for speech, input sequence X (acoustic frames)
is much longer than output sequence S (characters or phonemes)
o CTC does not require frame-level alignment (matching each input frame to an
output token)
e CTC sums over all possible alignments (similar to forward-backward algorithm) —
“alignment free”

@ Possible to back-propagate gradients through CTC

Gopod overview of CTC: Awni Hannun, “Sequence Modeling with CTC", Distill.
https://distill.pub/2017/ctc
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CTC: Alignment

@ Imagine mapping (x1, x2, X3, Xa, X5, Xg) to [a, b, c|
o Possible alignments: aaabbc, aabbcc, abbbbc,. ..
@ However
o Don't always want to map every input frame to an output symbol (e.g. if there is
“inter-symbol silence”)
e Want to be able to have two identical symbols adjacent to each other — keep the
difference between
@ Solve this using an additional blank symbol (¢)
o CTC output compression
@ Merge repeating characters
@ Remove blanks
Thus to model the same character successively, separate with a blank
@ Some possible alignments for [h, e, [, ], 0] and [h, e, !, 0] given a 10-element input
sequence
o [h,e 1,1, 0]: heeeellelo; heellelcoo
o [h,e,l, o] heeeellllo; hheeeleeoe
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CTC: Alignment example

hheeel | | el | ©
First, merge repeat
characters.

h e € e | ©
Then, remove any €
tokens.

h e | O
The remaining characters
are the output.

alel | e
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CTC: Valid and invalid alignments

Consider an output [c, a, t] with an input of length six

Valid Alignments Invalid Alignments

corresponds to
€ C C € at Ceieat Y=o c a t]
C Ca at t C C a at has length 5
C a € € € 1 C € € €|t t missing the 'a’

ASR Lecture 15 9



CTC: Alignment properties

@ Monotonic — Alignments are monotonic (left-to-right model); no re-ordering
(unlike neural machine translation)

@ Many-to-one — Alignments are many-to-one; many inputs can map to the same
output (however a single input cannot map to many outputs)

@ CTC doesn't find a single alignment: it sums over all possible alignments
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CTC: Loss function (1)

@ Let C be an output label sequence, including blanks and repetitions — same length
as input sequence X

@ Posterior probability of output labels C = (c1,...ct,...cr) given the input
sequence X = (x1,...X¢,...XT):

P(C|X) = Hy G, t

where y(ct, t) is the output for label ¢; at time t

@ This is the probability of a single alignment
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CTC: Loss function (2)

@ Let S be the target output sequence after compression
e Compute the posterior probability of the target sequence S = (s1,...5m,...5m)
(M < T) given X by summing over the possible CTC alignments:

P(S|X)= Y P(CIX)
ceA(S)
where A is the set of possible output label sequences ¢ that can be mapped to S
using the CTC compression rules (merge repeated labels, then remove blanks)
@ The CTC loss function Lc7¢ is given by the negative log likelihood of the sum of
CTC alignments:
Lcrc = —log P(S]X)
@ Perform the sum over alignments using dynamic programming — similar structure
as used in forward-backward algorithm and Viterbi (see Hannun for details)

@ Various NN architectures can be used for CTC — usually use a deep bidirectional
LSTM RNN
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CTC: Distribution over alignments

- We start with an input sequence,
like a spectrogram of audio

‘*‘af‘af‘afH*H*H*Hjﬂ{j,,f" The input is fed into an RNN,

e for example.
R

QRGN b hh h h h h h h

e e e e e e e e e e The network gives p, (a | X),

a distribution over the outputs
N EEpm ! ! {h,e,1,0, ¢} for each input step.

0O 0O 0 00 0o 0O 0O 0 o

€ € €

h € € ‘ ‘ € | ‘ 0 0 With the per time-step output
distribution, we compute the

h h e | I € € ‘ €0 probability of different sequences

€ e €| | € € | oo

h e | | O By marginalizing over alignments,
we get a distribution over outputs.

e|ll]l]@

h e | o
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Understanding CTC: Conditional independence assumption

e Each output is dependent on the entire input sequence (in Deep Speech this is
achieved using a bidirectional recurrent layer)

@ Given the inputs, each output is independent of the other outputs (conditional
independence)

@ CTC does not learn a language model over the outputs, although a language
model can be applied later

@ Graphical model showing dependences in CTC:
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Understanding CTC: CTC and HMM

e - (3 (3 (3 (3
GAORMGCICANC
Left-to-right HMM CTC HMM

@ CTC can be interpreted as an HMM with additional (skippable) blank states,
trained discriminatively
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Applying language models to CTC

@ Direct interpolation of a language model with the CTC acoustic model:

A

W =arg mm:jx(a log P(S|X) + log P(W))

Only consider word sequences W which correspond to the subword sequence S
(using a lexicon)

@ « is an empirically determined scale factor to match the acoustic model to the
language model

@ Lexicon-free CTC: use a “"subword language model” P(S) (Maas et al, 2015)

@ WFST implementation: create an FST T which transforms a framewise label

sequence ¢ into the subword sequence S, then compose with L and G:
T o min(det(L o G)) (Miao et al, 2015)
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Mozilla Deep Speech

Mozilla have released an Open Source TensorFlow implementation of the Deep
Speech architecture:

https://hacks.mozilla.org/2017/11/a-journey-to-10-word-error-rate/
https://github.com/mozilla/DeepSpeech
Close to state-of-the-art results on librispeech

Mozilla Common Voice project: https://voice.mozilla.org/en
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Summary and reading

@ CTC is an alternative approach to sequence discriminative training, typically
applied to RNN systems

@ Used in “"Deep Speech” architecture for end-to-end speech recognition
o Reading
o A Hannun et al (2014), “Deep Speech: Scaling up end-to-end speech recognition”,
ArXiV:1412.5567. https://arxiv.org/abs/1412.5567
o A Hannun (2017), “Sequence Modeling with CTC", Distill.
https://distill.pub/2017/ctc
@ Background reading
o Y Miao et al (2015), “EESEN: End-to-end speech recognition using deep RNN
models and WFST-based decoding”, ASRU-2105.
https://ieeexplore.ieee.org/abstract/document/7404790
o A Maas et al (2015). “Lexicon-free conversational speech recognition with neural
networks”, NAACL HLT 2015, http://www.aclweb.org/anthology/N15-1038
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