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Languages of the World

Over 6,000 languages globally....

In Europe alone

24 official languages and 5 “semi-official” languages
Over 100 further regional/minority languages
If we rank the 50 most used languages in Europe, then there are over 50 million
speakers of languages 26-50 (Finnish – Montenegrin)

3,000 of the world’s languages are endangered

Google cloud speech API covers over 60 languages and more than 50
accents/dialects of those languages; Apple Siri covers over 20 languages and
about 20 accents/dialects
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Under-resourced languages

Under-resourced (or low-resourced) languages have some or all of the following
characteristics

limited web presence

lack of linguistic expertise

lack of digital resources: acoustic and text corpora, pronunciation lexica, ...

Under-resourced languages thus provide a challenge for speech technology

See Besaciera et al (2014) for more

ASR Lecture 14 Multilingual and Low-Resource Speech Recognition 3



Speech recognition of under-resourced languages

Training acoustic and language models with limited training data

Transferring knowledge between languages

Constructing pronunciation lexica

Dealing with language specific characteristics (e.g. morphology)
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Multilingual and cross-lingual acoustic models

How to share information from acoustic models in different languages?

General principal – use neural network hidden layers to learn a multilingual
representation

Hidden layers are multilingual – shared between languages

Output layer is monolingual language specific

Hat swap use a network with multilingual hidden representations directly in a
hybrid DNN/HMM systems

Block softmax train a network with an output layer for each language, but
shared hidden layers

Multilingual bottleneck use a bottleneck hidden layer (trained in a multilingual)
way as features for either a GMM- or NN-based system
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Hat Swap – architecture

DNN finetuned 
on CZ

Stacked RBMs 
trained on PL

DNN finetuned 
on DE

DNN finetuned 
on PT

DNN finetuned 
on PL

Fig. 1. Multilingual training of deep neural networks.

does not require retraining any previously trained models for
other languages. Ideally, one would like the hidden layers
to converge to an optimized set of feature extractors that can
be reused across domains and languages. However, such a
study is inherently empirical, and variations of the techniques
reported here are currently under investigation.

4. EXPERIMENTS

We used the GlobalPhone corpus [25] for our experiments.
The corpus consists of recordings of speakers reading news-
papers in their native language. There are 19 languages from
a variety of geographical locations: Asia (Chinese, Japanese,
Korean), Middle East (Arabic, Turkish), Africa (Hausa), Eu-
rope (French, German, Polish), and Americas (Costa Rican
Spanish, Brazilian Portuguese). Recordings are made under
relatively quiet conditions using close-talking microphones;
however acoustic conditions may vary within a language and
between languages.

In this work we use seven languages from three differ-
ent language families: Germanic, Romance, and Slavic. The
languages used are: Czech, French, German, Polish, Brazil-
ian Portuguese, Russian and Costa Rican Spanish. Each lan-
guage has roughly 20 hours of speech for training and two
hours each for development and evaluation sets, from a total
of about 100 speakers. The detailed statistics for each of the
languages is shown in Table 1.

4.1. Baseline systems

For each language, we built standard maximum-likelihood
(ML) trained GMM-HMM systems, using 39-dimensional
MFCC features (C0-C12, with delta and acceleration coeffi-
cients), using the Kaldi speech recognition toolkit [26]. The
number of context-dependent triphone states for each lan-
guage is 3100 with a total of 50K Gaussians (an average of
roughly 16 Gaussians per state). The development set word
error rates (WER) for the different languages are presented
in Table 2. The results reported here are better than those in
our earlier work [13] because we used better LMs obtained

Table 1. Statistics of the subset of GlobalPhone languages
used in this work: the amounts of speech data for training,
development, and evaluation sets are in hours.

Language #Phones #Spkrs Train Dev Eval
Czech (CZ) 41 102 26.8 2.4 2.7
French (FR) 38 100 22.8 2.1 2.0
German (DE) 41 77 14.9 2.0 1.5
Polish (PL) 36 99 19.4 2.9 2.3
Portuguese (PT) 45 101 22.8 1.6 1.8
Russian (RU) 48 115 19.8 2.5 2.4
Spanish (SP) 40 100 17.6 2.0 1.7

from the authors of [3, 27]. We must stress that the ML
baseline results are presented here to serve as a point of ref-
erence, and not for direct comparison with the DNN results.
The scripts needed to replicate the GMM-HMM results are
publicly available as a part of the Kaldi toolkit2.

4.2. DNN configuration and results

For training DNNs, our tools utilize the Theano library [28],
which supports transparent computation using both CPUs and
GPUs. We train the networks on the same 39-dimensional
MFCCs as the GMM-HMM baseline. The features are glob-
ally normalised to zero mean and unit variance, and 9 frames
(4 on each side of the current frame) are used as the input to
the networks. All the networks used here are 7 layers deep,
with 2000 neurons per hidden layer. The initial weights for
the softmax layer were chosen uniformly at random: w ⇠
U [�r, r], where r = 4

p
6/(nl�1 + nl) and nl is the num-

ber of units in layer l. Fine-tuning is done using stochastic
gradient descent on 256-frame mini-batches and an exponen-
tially decaying schedule, learning at a fixed rate (0.08) un-
til improvement in accuracy on cross-validation set between
two successive epochs falls below 0.5%. The learning rate is
then halved at each epoch until the overall accuracy fails to
increase by 0.5% or more, at which point the algorithm ter-
minates. While learning, the gradients were smoothed with

2Available from: http://kaldi.sf.net
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Hat Swap – experiment

Recognition of GlobalPhone Polish

Table 2. Development set results: vocabulary size is the intersection between LM and pronunciation dictionary vocabularies;
perplexity (PPL) figures are obtained considering sentence beginning and ending markers; and for multilingual DNNs we show
the order of the languages used to train the networks.

Language Vocab PPL ML-GMM DNN Multilingual DNN
WER(%) WER(%) Languages WER(%)

CZ 29K 823 18.5 15.8 — —
DE 36K 115 13.9 11.2 CZ !DE 9.4
FR 16K 341 25.8 22.6 CZ !DE !FR 22.6
SP 17K 134 26.3 22.3 CZ !DE !FR !SP 21.2
PT 52K 184 24.1 19.1 CZ !DE !FR !SP !PT 18.9
RU 24K 634 32.5 27.5 CZ !DE !FR !SP !PT !RU 26.3
PL 29K 705 20.0 17.4 CZ !DE !FR !SP !PT !RU !PL 15.9

Fig. 2. Mono- and multi-lingual DNN results on Polish. The
languages are added left-to-right starting with Czech and end-
ing with Polish. Hence ‘+FR’ corresponds to the schedule CZ
!DE !FR !PL.

a first-order low-pass momentum (0.5). For the multilingual
DNNs, an initial learning rate of 0.04 is used.

A comparison of the WERs obtained by the monolingual
and multilingual DNNs for the different languages in Table 2
supports our hypotheses: the hidden layers are indeed trans-
ferable between languages, and training them with more lan-
guages, by and large, makes them better suited for the target
languages. These trends are shown in greater detail for Polish
(in Figure 2) and Russian (in Table 3).

It is important to note that the different systems do not
control for the amount of data; a system with more languages
is trained on more data and some of the performance gains
may well be attributed to that. However, we also notice that
just adding more data may not always improve results. For
example, in Figure 2 we see worse performance by adding
Portuguese, and the Czech data did not lower WER for either
Polish or Russian. This may indicate a need for better cross-
corpus normalization, for example, using speaker adaptive
training. Conversely, this may also indicate that the sequential
training protocol followed here is suboptimal. In fact, for the
systems shown in Figure 2, training on Russian after Spanish

Table 3. Mono- and multi-lingual DNN results on Russian.

Languages Dev Eval
RU 27.5 24.3
CZ !RU 27.5 24.6
CZ !DE !FR !SP !RU 26.6 23.8
CZ !DE !FR !SP !PT !RU 26.3 23.6

and then on Polish leads to similar WER as when Portuguese
is used for finetuning after Spanish. These issues are currently
under investigation.

5. DISCUSSION

We presented experiments with multilingual training of hy-
brid DNN-HMM systems showing that training the hidden
layers using data from multiple languages leads to improved
recognition accuracy. The results are very promising and
point to areas of future work: for instance, determining if the
number of layers in the network has an effect on these results.
The notion of deep neural networks performing a cascade of
feature extraction, from lower-level to higher-level features,
provides both an explanation for the observed effect, as well
as the inkling that the effect may be more pronounced for
deeper structures. There are also practical engineering issues
to consider: checking whether a simultaneous training, where
the randomization of observations is done across all lan-
guages in consideration, improves on the current sequential
protocol; experimenting with transformations of the feature
space as well as with discriminative features, some of which
may enhance or mitigate this effect; and experimenting with
a broader set of languages.

6. ACKNOWLEDGMENTS

This research was supported by EPSRC Programme Grant grant, no.
EP/I031022/1 (Natural Speech Technology). We would also like to
thank Tanja Schultz and Ngoc Thang Vu for making the Global-
Phone language models available to us, and Miloš Janda for help
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Block softmax

In block softmax we train one network for all languages:

separate output layer for each language
shared hidden layers

Each training input is propagated forward to the output layer of the corresponding
language – only that output layer is used to compute the error used to train the
network for that input

Since the hidden layers are shared, they must learn features relevant to all the
output layers (languages)

Can view block softmax as a parallel version of hat swap
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Block softmax – architecture
softmax layers, however, are not shared. Instead, each language 
has its own softmax layer to estimate the posterior probabilities of 
the senones (tied triphone states) specific to that language. 
 

...

...

...

...

...

...

... ... ... ...Language 1 senones

Input Layer: 
A window of acoustic feature frames 

Shared 
Feature Transformation

Language 2 senones Language 3 senones Language 4 senones

Lang 1 Lang 2 Lang 3 Lang 4 Training or Testing Samples

Text

Many Hidden Layers

Figure 1: Architecture of the shared-hidden-layer multilingual 
DNN 

 
As usual, the input layer covers a long contextual window of 

the acoustic feature (e.g., MFCC or log filter bank) frames. Since 
the shared hidden layers are to be used by many languages, 
language specific transformations such as HLDA cannot be applied. 
This requirement will not limit the performance of the CD-DNN-
HMM, though, because any linear transformation can be subsumed 
by the DNN as indicated in [4]. 

The key to the successful learning of the SHL-MDNN is to 
train the model for all the languages simultaneously. When batch 
training algorithms, such as L-BFGS or the Hessian free algorithm 
[8], are used, this is trivial since all the data will be used in each 
update of the model. However, if mini-batch training algorithms, 
such as the mini-batch stochastic gradient ascent (SGA), are used, 
it means each mini-batch should be drawn from all the training 
data available. This can be efficiently accomplished by 
randomizing the training utterance list across the languages before 
feeding it into our DNN training tool. 

The SHL-MDNN can be pretrained in either supervised or 
unsupervised way. In this study we have adopted the unsupervised 
pre-training procedure used in our previous study [1]. This is 
because the unsupervised pretraining does not involve the 
language-specific softmax layer and so can be carried out easily 
without any modification of our existing tool. 

The fine-tuning of the SHL-MDNN can be carried out using 
the conventional backpropagation (BP) algorithm. However, since 
a different softmax layer is used for each different language, the 
algorithm needs to be adjusted slightly. When a training sample is 
presented to the SHL-MDNN trainer, only the shared hidden layers 
and the language-specific softmax layer are updated. Other 
softmax layers are kept intact. The SHLs serve as a structural 
regularization to the model and the entire SHL-MDNN and its 
training procedure can be considered as an example of multi-task 
learning. 

After being trained, the SHL-MDNN can be used to recognize 
speech of any language used in the training process. By sharing the 
hidden layers in the SHL-MDNN and by using the joint training 
strategy, we can improve the recognition accuracy of all the 

languages decodable by the SHL-MDNN over the monolingual 
DNNs trained using data from individual languages only. 

We evaluated the SHL-MDNN on a Microsoft internal speech 
recognition task. The training set contains 138-hour (hr) French 
(FRA), 195-hr German (DEU), 63-hr Spanish (ESP), and 63-hr 
Italian (ITA) speech data. The SHL-MDNN used in the experiment 
has 5 hidden layers, each with 2048 nodes. The input to the DNN 
is 11 (5-1-5) frames of the 13-dim MFCC feature with its 
derivatives and accelerations. For each language, the output layer 
has 1.8k senones determined by the GMM-HMM system trained 
with the maximum likelihood estimation (MLE) on the same 
training set. The SHL-MDNN was initialized using the 
unsupervised DBN-pretraining procedure, and then refined with 
BP using senone labels derived from the MLE model alignment. 
The trained DNNs are plugged in the CD-DNN-HMM framework 
designed for LVSR [1]. 

Table 1: Compare Monolingual DNN and Shared-Hidden-Layer 
Multilingual DNN in WER (%) 

 FRA DEU ESP ITA 
Test Set Size (Words) 40k 37k 18k 31k 
Monolingual DNN (%) 28.1 24.0 30.6 24.3 
SHL-MDNN (%) 27.1 22.7 29.4 23.5 
Relative WER Reduction (%) 3.6 5.4 3.9 3.3 
 
Table 1 compares the word error rate (WER) obtained on the 

language specific test sets using the monolingual DNN (trained 
using only the data from that language) and the SHL-MDNN 
(whose hidden layers are trained using data from all four 
languages). From the table we can observe that the SHL-MDNN 
outperforms the monolingual DNN with a 3-5% relative WER 
reduction across all the languages. Note that when training 
monolingual DNNs, we shuffled the training utterances as well and 
adopted the same epoch numbers per language as in SHL-MDNN. 
Therefore, we ascribe the gain of SHL-MDNN to cross-language 
knowledge. It is encouraging that even for FRA and DEU, which 
have more than 100 hours of training data, SHL-MDNN can still 
provide improvement. This is not the only advantage of the SHL-
MDNN. For example,  since multiple languages are simultaneously 
decodable with its unified DNN structure, the SHL-MDNN makes 
multilingual LVSR easy and efficient. 
 

3. CROSS-LINGUAL MODEL TRANSFER 
 
The shared hidden layers (SHLs) extracted from the multilingual 
DNN can be considered as an intelligent feature extraction module 
jointly trained with data from multiple source languages. As such 
they carry rich information to distinguish phonetic classes in 
multiple languages and can be carried over to distinguish phones in 
new languages.  

The procedure of cross-lingual model transfer is simple. We 
extract the SHLs from the SHL-MDNN and add a new softmax 
layer on top of it. The softmax layer’s output nodes correspond to 
the senones in the target language. We then fix the hidden layers 
and only train the softmax layer using training data from the target 
language. If enough training data is available, additional gains may 
be achieved by further tuning the entire network. 

To evaluate the effectiveness of cross-lingual model transfer, 
we used American English (ENU) (phonetically close to the 

Huang et al, 2013

NB: A senone is a context-dependent tied state
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Bottleneck features

OPTIMIZING BOTTLE-NECK FEATURES FOR LVCSR
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ABSTRACT

This work continues in development of the recently proposed
Bottle-Neck features for ASR. A five-layers MLP used in bottle-
neck feature extraction allows to obtain arbitrary feature size without
dimensionality reduction by transforms, independently on the MLP
training targets. The MLP topology – number and sizes of layers,
suitable training targets, the impact of output feature transforms, the
need of delta features, and the dimensionality of the final feature vec-
tor are studied with respect to the best ASR result. Optimized fea-
tures are employed in three LVCSR tasks: Arabic broadcast news,
English conversational telephone speech and English meetings. Im-
provements over standard cepstral features and probabilistic MLP
features are shown for different tasks and different neural net in-
put representations. A significant improvement is observed when
phoneme MLP training targets are replaced by phoneme states and
when delta features are added.

Index Terms— Bottle-neck, MLP structure, features, LVCSR

1. INTRODUCTION

Features for ASR obtained from neural networks have recently be-
come a component of state-of-the-art recognition systems [1]. They
are typically obtained by projecting a larger time span of a critical-
band spectrogram onto posterior probabilities of phoneme classes
using multi-layer perceptron (MLP). That is why they are sometimes
referred to as probabilistic features. In order to better fit the sub-
sequent Gaussian mixture model, the MLP estimates of posteriors
are logarithmized and decorrelated by Principal Components Analy-
sis (PCA) or Heteroscedastic Linear Discriminant Analysis (HLDA),
which also allows to reduce their dimensionality.

The performance of probabilistic features is often below that of
standard cepstral features. However, due to their different nature,
they exhibit a large amount of complementary information. The role
of the probabilistic features in ASR is thus to augment the cepstral
features. This is especially the case of TRAP-based probabilistic
features [2], where the input to the MLP is formed by temporal tra-
jectories of energies in independent critical bands. Since their intro-
duction, several modifications targeting the input spectrogram [3, 4],
the MLP structure [5] and MLP training targets [6] were proposed.
Despite all the effort, probabilistic features have not consistently out-

This work was partly supported by European IST projects AMIDA (FP6-033812)
and Caretaker (FP6-027231), by Grant Agency of Czech Republic under project No.
102/08/0707, by Czech Ministry of Education under project No. MSM0021630528,
and by the DARPA GALE program, Contract No. HR0011-06-C-0022. The hardware
used in this work was partially provided by CESNET under projects No. 162/2005 and
No. 201/2006.

PCA /

R
aw

 fe
at

ur
es

Segmentation
step: 10ms
length: 25ms

5 layer MLP

HLDA

spectrogram

BN
features

speaker based

variance 
normalization

Log−critical band

| FFT | ^2

Log

Critical bands (+VTLN) Speech

DCT
Hamming

Hamming
DCT

mean and

Fig. 1. Block diagram of the Bottle-Neck feature extraction with
TRAP-DCT raw features at the MLP input.

performed cepstral features and are being used only as their comple-
ment.

This misfortune seems to have ended last year with the introduc-
tion of the Bottle-Neck (BN) features [7]. BN features use five-layers
MLP with a narrow layer in the middle (bottle-neck). The fundamen-
tal difference between probabilistic and BN features is that the latter
are not derived from the class posteriors. Instead, they are obtained
as linear outputs of the neurons in the bottle-neck layer. This struc-
ture makes the size of the features independent of the number of the
MLP training targets. Hence it is easy to replace the phoneme targets
by finer and more numerous sub-phoneme classes, while retaining a
small feature vector without a need of a dimensionality reduction.
The bottle-neck MLP training process is the same as for probabilis-
tic features and employs all five layers. During feature extraction
only the first three layers are involved. It is illustrated in Fig. 1.

This work continues in the development of the BN features by
experimenting with the topology of the MLP (number of layers and
their sizes) as described in section 3.1. Section 3.2 evaluates the
contribution of switching from phoneme to sub-phoneme training
targets. Section 3.3 questions the necessity of decorrelating the fea-
tures prior to GMM-HMM modeling by PCA or HLDA transforms.
Finally, section 3.4 experiments with augmenting BN features by
their temporal derivatives in the same way it is commonly done to
cepstral features.

2. EXPERIMENTAL SETUP

Experiments were carried out on three LVCSR tasks using two in-
dependent MLP implementations, three independent HMM imple-
mentations and three different MLP raw input features in order to
provide a better objectivity in conclusions.

2.1. Raw Features for MLP

The purpose of the neural network in the BN system is to transform
a certain representation of speech into output features. The speech

Grezl and Fousek (2008)

Use a “bottleneck” hidden layer to provide features as input to a GMM or an NN
Decorrelate the hidden layer using PCA (or similar)
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Multilingual bottleneck features – architecture

DE FR

EN . . .

. . .

. . .

GER

ENU

FRA

. . .
. . .

. . .

Fig. 1. The joint training of bottleneck MLP on multiple languages (GER, ENU, FRA). The different colors indicate different languages, and
language dependent back-propagation from the output layer. The other parts of the network including the bottleneck layer are shared between
the languages.

Table 2. Baseline MFCC results in Word Error Rate (WER) are
compared with the performance of the target and cross-lingual bot-
tleneck (MFCC+BN) features. The relative improvements over the
MFCC system of the target language are indicated in round brackets.

WER [%] MFCC
MFCC+BN

Bottleneck trained on
GER ENU FRA

Te
st

la
ng

ua
ge GER 29.97

27.50 29.63 30.38
(8.2) (1.1) (-1.4)

ENU 21.69
21.31 18.85 22.63
(1.8) (13.1) (-4.3)

FRA 37.78
37.76 38.72 33.95
(0.1) (-2.5) (10.1)

5.2. Cross-lingual portability of mono-lingual BN features

In the second experiment, the cross lingual portability of the MLPs
trained in the previous experiment was investigated. Comparing
the off-diagonal entries of Table 2 to the first column, we observed
only a slight maximal 2% relative improvements compared to MFCC
alone. There exists cross-lingual portability between German and
English to a certain extent (1-2% relative), but using French BN fea-
tures for the remaining two languages or BN features from other
languages on the French task shows WER increase. As a summary,
the cross-lingual portability of BN could help, but the performance
remained far behind that was achieved by using target language data
to train the BN. Our short-time BN features are much simpler as
the long-term features applied in [6], thus our observation is similar
to [7], where short-time MLP features did not lead to performance
improvement without additional weight adaptation.

5.3. Results with multilingual BN features

In the third experiment, we investigated the multilingual BN features
trained according to Section 3. In the first tests the multilingual BNs
were trained on two languages other than the target one. E.g. BN
features trained on US English and French were tested in German
ASR experiments. The results are presented in the first column of Ta-
ble 3. Although the cross-lingual French BN deteriorated the recog-
nition performance, the multilingual training on the merged French
and English data improved the German system more than 5% rela-

tive. The improvement does not reach the target language BN perfor-
mance, but clearly – 4% relative – outperformed the best results of
cross-lingual BN. Similar observations can be made on English and
on French using German+French or German+English multilingual
BN features respectively. The results indicate that through the multi-
lingual training the BN features capture more language-independent
representation of the speech, and are better suited for cross-lingual
porting to new languages.

In the next experiment, multilingual bottleneck features were
trained using target language data with other languages. The results
can be seen in the 2nd-4th columns of Table 3. It is encouraging to
see that adding additional data from a non-target language further
improved the performance. To obtain common BN features for the
three languages, we also trained a network on all the 450 hours of
data. Remarkably, this single net outperformed all the above results
in Table 2.

Experimental results indicate that multilingual BN feature esti-
mation is superior compared to the monolingual case despite possi-
ble differences in the type of cars and noise conditions specific to the
country (and therefore language). Since in our experiments, we used
only about 150 hours of data per language, we attribute this to avail-
ability of larger training data. Therefore, if more data were available
in individual languages, the trend could be different.

To investigate the effect of language dependent softmax and
back-propagation, BN features using a unified phoneme set as in
[11] were also tested. On German task this BN showed 27.57%
WER which is 2.5% relative worse than the proposed multilingual
training. In order to have a better understanding of the multilingual
BN features and the effect of the amount of data, the previous ex-
periment was repeated with a multilingual BN trained on one third
(chosen randomly) of the merged corpora resulting in about the same
amount of speech data from each language. This multilingual BN
achieved 27.90% on the German task, which is slightly worse than
using same amount of source language speech. The previous results
prove the effectiveness of the multilingual training, and underline
the importance of target language data.

The results so far are obtained using an GMM-HMM system
trained using the ML criterion. Table 4 shows WERs of the dis-
criminatively trained German GMM-HMM systems. It can be seen
that the gain we observed previously with ML models are not dimin-
ished by MCE. Again, the multilingual BN achieved the best perfor-
mance outperforming the BN trained on target language data only.
The BN trained on French and English (without seeing any German
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Multilingual bottleneck features – experiments

GMM-based acoustic models. (Similar results obtained using multilingual bottleneck
features with NN-based acoustic models.)

DE FR

EN . . .

. . .

. . .

GER

ENU

FRA

. . .
. . .

. . .

Fig. 1. The joint training of bottleneck MLP on multiple languages (GER, ENU, FRA). The different colors indicate different languages, and
language dependent back-propagation from the output layer. The other parts of the network including the bottleneck layer are shared between
the languages.

Table 2. Baseline MFCC results in Word Error Rate (WER) are
compared with the performance of the target and cross-lingual bot-
tleneck (MFCC+BN) features. The relative improvements over the
MFCC system of the target language are indicated in round brackets.

WER [%] MFCC
MFCC+BN

Bottleneck trained on
GER ENU FRA

Te
st

la
ng

ua
ge GER 29.97

27.50 29.63 30.38
(8.2) (1.1) (-1.4)

ENU 21.69
21.31 18.85 22.63
(1.8) (13.1) (-4.3)

FRA 37.78
37.76 38.72 33.95
(0.1) (-2.5) (10.1)

5.2. Cross-lingual portability of mono-lingual BN features

In the second experiment, the cross lingual portability of the MLPs
trained in the previous experiment was investigated. Comparing
the off-diagonal entries of Table 2 to the first column, we observed
only a slight maximal 2% relative improvements compared to MFCC
alone. There exists cross-lingual portability between German and
English to a certain extent (1-2% relative), but using French BN fea-
tures for the remaining two languages or BN features from other
languages on the French task shows WER increase. As a summary,
the cross-lingual portability of BN could help, but the performance
remained far behind that was achieved by using target language data
to train the BN. Our short-time BN features are much simpler as
the long-term features applied in [6], thus our observation is similar
to [7], where short-time MLP features did not lead to performance
improvement without additional weight adaptation.

5.3. Results with multilingual BN features

In the third experiment, we investigated the multilingual BN features
trained according to Section 3. In the first tests the multilingual BNs
were trained on two languages other than the target one. E.g. BN
features trained on US English and French were tested in German
ASR experiments. The results are presented in the first column of Ta-
ble 3. Although the cross-lingual French BN deteriorated the recog-
nition performance, the multilingual training on the merged French
and English data improved the German system more than 5% rela-

tive. The improvement does not reach the target language BN perfor-
mance, but clearly – 4% relative – outperformed the best results of
cross-lingual BN. Similar observations can be made on English and
on French using German+French or German+English multilingual
BN features respectively. The results indicate that through the multi-
lingual training the BN features capture more language-independent
representation of the speech, and are better suited for cross-lingual
porting to new languages.

In the next experiment, multilingual bottleneck features were
trained using target language data with other languages. The results
can be seen in the 2nd-4th columns of Table 3. It is encouraging to
see that adding additional data from a non-target language further
improved the performance. To obtain common BN features for the
three languages, we also trained a network on all the 450 hours of
data. Remarkably, this single net outperformed all the above results
in Table 2.

Experimental results indicate that multilingual BN feature esti-
mation is superior compared to the monolingual case despite possi-
ble differences in the type of cars and noise conditions specific to the
country (and therefore language). Since in our experiments, we used
only about 150 hours of data per language, we attribute this to avail-
ability of larger training data. Therefore, if more data were available
in individual languages, the trend could be different.

To investigate the effect of language dependent softmax and
back-propagation, BN features using a unified phoneme set as in
[11] were also tested. On German task this BN showed 27.57%
WER which is 2.5% relative worse than the proposed multilingual
training. In order to have a better understanding of the multilingual
BN features and the effect of the amount of data, the previous ex-
periment was repeated with a multilingual BN trained on one third
(chosen randomly) of the merged corpora resulting in about the same
amount of speech data from each language. This multilingual BN
achieved 27.90% on the German task, which is slightly worse than
using same amount of source language speech. The previous results
prove the effectiveness of the multilingual training, and underline
the importance of target language data.

The results so far are obtained using an GMM-HMM system
trained using the ML criterion. Table 4 shows WERs of the dis-
criminatively trained German GMM-HMM systems. It can be seen
that the gain we observed previously with ML models are not dimin-
ished by MCE. Again, the multilingual BN achieved the best perfor-
mance outperforming the BN trained on target language data only.
The BN trained on French and English (without seeing any German
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Table 3. Recognition results achieved with multilingual BN features.
The relative improvements over the MFCC (in Table 2) are indicated
in round brackets.

WER MFCC+BN
[%] BN trained on

Te
st

la
ng

ua
ge

GER
ENU+FRA GER+FRA GER+ENU GER+ENU+FRA

28.37 27.06 26.89 26.90
(5.3) (9.7) (10.3) (10.2)

ENU
GER+FRA ENU+FRA ENU+GER GER+ENU+FRA

20.29 18.21 17.99 17.89
(6.5) (16.0) (17.1) (17.5)

FRA
GER+ENU FRA+GER FRA+ENU GER+ENU+FRA

35.88 33.52 33.45 33.61
(5.0) (11.3) (11.5) (11.0)

data) improved the MFCC system more than 7% relative, whereas
the monolingual English BN hardly resulted in better performance
than baseline MFCC.

Table 4. Recognition results after discriminative training of GMM-
HMM on the German task

Features WER [%] rel.imp [%]

MFCC 29.10 -

M
FC

C
+B

N

B
N

tr
ai

ne
d

on GER 26.40 9.3
ENU 28.78 1.1

ENU+FRA 27.06 7.0
GER+ENU 25.68 11.8

GER+ENU+FRA 25.61 12.0

5.4. Multilingual BN in mismatched acoustical conditions

The BN features were also investigated in an experiment where it is
assumed that only acoustically mismatched training data is available
on the target language. However, matched data from other languages
is available, and the multilingual MLP is applied to take advantage
of them. Column 1 in Table 5 shows the WERs obtained by train-
ing GMM-HMM acoustic models using baseline MFCC features on
mismatched data. Comparing to the results in Table 2, the base-
lines become 15% worse because of the acoustical difference be-
tween training and test recordings. Concatenating MFCC with BN
trained on the target language showed less improvement than in the
matched case (2nd column). In this special ASR experiment, using
non-target monolingual BN (3rd column) led to more improvement
than previously, since it had seen matched data, but in another lan-
guage. Moreover, porting acoustically matched knowledge from two
other languages through multilingual BN improved the results fur-
ther. However, as the last column of Table 5 shows, the best results
were achieved when the mismatched data available in the target lan-
guage and all matched data from other languages was used to train
the BN. In this case, the amount of target language data is less than
1/5 during BN training. The final systems achieved comparable re-
sults as the MFCC system trained on matched data (Table 2).

Table 5. Baseline (MFCC), cross-, and multilingual results using
only mismatched data in the test language. Bold font indicates the
availability of both matched and mismatched data in the language

WER
MFCC

MFCC+BN
[%] BN trained on

Te
st

la
ng

ua
ge

GER ENU +
ENU
FRA +

GER
ENU+FRA

GER 34.58 33.39 34.07 32.74 31.72
(3.4) (1.5) (5.3) (8.3)

ENU GER +
GER
FRA +

GER
ENU+FRA

ENU 26.14 23.54 24.81 23.68 21.79
(9.9) (5.1) (9.4) (16.6)

FRA GER +
GER
ENU +

GER
ENU+FRA

FRA 43.52 40.51 43.65 41.96 39.98
(6.9) (-0.3) (3.6) (8.1)

5.5. Discussion

Although the experiments were designed to have similar acoustic
conditions for all languages, there is a slight driving condition and
car noise characteristic mismatch between them. Consequently, the
neural networks in the multilingual experiments were trained not
only on more languages but also on more types of noises, which con-
tribute to better generalization. However, as the results on cross- and
multilingual porting of BN for another languages showed, the im-
provements increased only slightly even in completely mismatched
training and testing conditions. This could also indicate that the im-
provement is mainly related to the better cross-language generaliza-
tion property of multilingual MLP.

Since our research was limited to three languages and phoneme
sets, as a future direction, we intend to carry out experiments with
more languages and corresponding MLP output targets.

6. CONCLUSIONS

A recently introduced multilingual MLP training was extensively
evaluated within the bottleneck TANDEM framework. Applying the
multilingual technique for bottleneck MLP to extract more language
independent features, it was experimentally shown that the multilin-
gual BN features offered better cross-lingual portability. Moreover,
we also showed, that through the multilingual approach a single BN
net can be trained for three languages, and in all cases it outper-
formed the BN features trained only on target language data. Finally,
the multilingual BN was successfully applied to reduce the mismatch
between training and testing acoustical conditions reusing matched
data from other languages.
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(Mismatched acoustic environment)

Tüske et al, 2013
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Graphemes and phonemes

Can represent pronunciations as a sequence of graphemes (letters) rather than a
sequence of phones

Advantages of grapheme-based pronunciations

No need to construct/generate phone-based pronunciations
Can use unicode attributes to assist in decision tree construction

Disadvantages: not always direct link between graphemes and sounds (most of in
English)
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Grapheme-based ASR results for 6 low-resource languages

Language System Script Graphemes†

Kurmanji Kurdish Alphabet Latin 62
Tok Pisin Alphabet Latin 52
Cebuano Alphabet Latin 53
Kazakh Alphabet Cyrillic/Latin 126
Telugu Abugida Telugu 60
Lithuanian Alphabet Latin 62
Levantine Arabic Abjab Arabic 36

Table 2: Option Period 2 Languages, and data releases. † the num-
ber of graphemes in the FLP, excluding apostrophe.

Table 2 shows some of the attributes of the seven languages
investigated. Three different writing schemes were evaluated: Al-
phabet, Abugida, and Abjab. Four forms of writing script were ex-
amined: Latin, Cyrillic, Arabic and Telugu. Additionally the table
gives the number of “raw” graphemes, with no mappings, that are
observed in the FLP training transcriptions, or the complete Levan-
tine Arabic training transcriptions.

Language Grapheme Mapping #
Pack — cap scr atr sgn Phn
FLP 126 67 62 54 52 59
LLP 117 66 61 53 51 59

VLLP 95 59 54 46 44 59
ALP 81 55 51 43 42 59

Table 3: Number of unique tokens in Kazakh (302) (incremen-
tally) removing: cap capitalisation; scr writing alphabet; attr
attributes; sgn signs

It is interesting to see how the number of graphemes varies with
the form of grapheme mapping used, and the size of the data (or
LP). Table 3 shows the statistics for Kazakh, which has the greatest
number of observed graphemes as both Cyrillic and Latin script are
used. The first point to note is that going from the FLP to the ALP,
45 graphemes are not observed in the ALP compared to the FLP.

As the forms of mapping are increased: removing capitalisation;
writing script; remaining grapheme attributes; and sign information,
the number of graphemes decreases. However comparing the FLP
and ALP, there are still 10 graphemes not seen in the ALP. If the
language model is only based on the acoustic data transcriptions
this is not an issue. However if additional language model training
data is available, then acoustic models are required for these unseen
graphemes. In contrast for all LPs all the phones are observed in all
LPs. Note for all the phonetic systems, diphthongs are mapped to
their individual constituents.

4. EXPERIMENTAL RESULTS

This section contrasts the performance of the proposed unicode-
based graphemic systems with phonetic systems, and also an expert
derived Levantine Arabic graphemic system. The performance us-
ing limited resources on CTS data is poor compared to using larger
amounts of resources, or simpler tasks.

4.1. Acoustic and Language Models

The acoustic and language models built on the six Babel languages
were built in a Babel BaseLR configuration [14]. Thus no additional
information from other languages, or LPs, were used in building the

systems. HTK [15] was used for training and test, with MLPs trained
using QuickNet [16]. All acoustic models were constructed from a
flat-start based on PLP-features, including HLDA and MPE training.
The decision trees used to construct the context-dependent models
were based on state-specific roots. This enables unseen phones and
graphemes to be synthesised and recognised, even if they do not oc-
cur in the acoustic model training data [17]. Additionally it allows
rarely seen phones and graphemes to be handled without always
backing off to monophone models. These baseline acoustic mod-
els were then extended to Tandem-SAT systems. Here Bottle-Neck
(BN) features were derived using DNNs with PLP plus pitch and
probability of voicing (PoV) obtained using the Kaldi toolkit [18] 4.
Context-dependent targets were used. These 26-dimensional BN
features were added to the HLDA projected PLP features and pitch
features to yield a 71-dimensional feature vector. The baseline mod-
els for the Levantine Arabic system were identical to the Babel sys-
tems. However the Tandem-SAT system did not include any pitch or
PoV features, so the final feature-vector size was 65.

For all systems only the manual transcriptions for the audio
training data were used for training the language models. To give
an idea of the available data for Kazakh the number of words are:
FLP 290.9K; LLP 71.2K; VLLP 25.5K; and ALP 8.8K. For all ex-
periments in this section, manual segmentation of the test data was
used. This allows the impact of the quantity of data and lexicon to
be assessed without having to consider changes in the segmentation.

4.2. Full Language Pack Systems

Language ID System WER (%)
tg +cn cnc

Kurmanji 205 Phonetic 67.6 65.8 64.1Kurdish Graphemic 67.0 65.3

Tok Pisin 207 Phonetic 41.8 40.6 39.4Graphemic 42.1 41.1

Cebuano 301 Phonetic 55.5 54.0 52.6Graphemic 55.5 54.2

Kazakh 302 Phonetic 54.9 53.5 51.5Graphemic 54.0 52.7

Telugu 303 Phonetic 70.6 69.1 67.5Graphemic 70.9 69.5

Lithuanian 304 Phonetic 51.5 50.2 48.3Graphemic 50.9 49.5

Table 4: Babel FLP Tandem-SAT Performance

To give an idea of relative performance when all available data
is used, FLP graphemic and phonetic systems were built for all six
Babel languages. The results for these are shown in Table 4. For
all languages the graphemic and phonetic systems yield compara-
ble performance. It is clear that some languages, such as Kurmanji
Kurdish and Telugu are the hardest, with Tok Pisin (a Creole lan-
guage) being the easiest. As expected combining the phonetic and
graphemic systems together yields consistent performance gains of
1.2% to 1.6% absolute over the best individual systems.

For the Levantine Arabic CTS task no phonetic lexicon was
available. However as Arabic uses an Abjab writing form, all conso-

4Though performance gains were obtained using FBANK features over
PLP, these gains disappeared when pitch features were added in initial exper-
iments.

IARPA Babel, 40h acoustic training data per language, monolingual training; cnc is
confusion network combination, combining the grapheme- and phone-based systems
Gales et al (2015)
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Morphology

Many languages are morphologically richer than English: this has a major effect of
vocabulary construction and language modelling

Compounding (eg German): decompose compund words into constituent parts,
and carry out pronunciation and language modelling on the decomposed parts

Highly inflected languages (eg Arabic, Slavic languages): specific components for
modelling inflection (eg factored language models)

Inflecting and compounding languages (eg Finnish)

All approaches aim to reduce ASR errors by reducing the OOV rate through
modelling at the morph level; also addresses data sparsity
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Vocabulary size for different languages
3:18 • M. Creutz et al.
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Fig. 7. Vocabulary growth curves for different languages: For growing amounts of text (word
tokens), the numbers of unique different word forms (word types), occurring in the text are plotted.

3.3 Word Models, Vocabulary Growth, and Spontaneous Speech

To improve the word models, one could attempt to increase the vocabulary
(recognition lexicon) of these models. A high coverage of the vocabulary of the
training set might also reduce the OOV rate of the recognition data (test set).
However, this may be difficult to obtain.

Figure 7 shows the development of the size of the training set vocabulary
for growing amounts of training data. The corpora used for Finnish, Estonian,
and Turkish are the datasets used for training language models (mentioned in
Section 3.1.2). For comparison, a curve for English is also shown; the English
corpus consists of text from the New York Times magazine. While there are
fewer than 200,000 different word forms in the 40-million word English cor-
pus, the corresponding values for Finnish and Estonian corpora of the same
size exceed 1.8 million and 1.5 million words, respectively. The rate of growth
remains high as the entire Finnish LM training data of 150 million words (used
in Fin4) contains more than 4 million unique word forms. This value is thus ten
times the size of the (rather large) word lexicon currently used in the Finnish
experiments.

Figure 8 illustrates the development of the OOV rate in the test sets for
growing amounts of training data. That is, assuming that the entire vocabulary
of the training set is used as the recognition lexicon, the words in the test set
that do not occur in the training set are OOVs. The test sets are the same as
used in the speech recognition experiments, and for English, a held-out subset
of the New York Times corpus was used. Again, the proportions of OOVs are
fairly high for Finnish and Estonian; at 25 million words, the OOV rates are
3.6% and 4.4%, respectively (compared with 1.7% for Turkish and only 0.74%

ACM Transactions on Speech and Language Processing, Vol. 5, No. 1, Article 3, Publication date: December 2007.

Creutz et al (2007)
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OOV Rate for different languages
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Fig. 8. For growing amounts of training data, development of the proportions of words in the test
set that are not covered by the training set.

for English). If the entire 150-million word Finnish corpus were to be used (i.e.,
a lexicon containing more than 4 million words), the OOV rate for the test set
would still be 1.5%.

Not surprisingly, the feasibility of the use of high-coverage standard word
lexicons for Finnish and Estonian is low. In light of the plots in Figures 7 and 8,
word lexicons might, however, be an option for Turkish. The slower vocabulary
growth for Turkish is likely due to the much lower number of compound words
in Turkish in comparison to Finnish and Estonian. Word lexicons are the state-
of-the-art solution for English.

3.3.1 Egyptian Arabic. The vocabulary growth and OOV curves for Arabic
are not visible in Figures 7 and 8 because of the small amount of Arabic data
available (164,000 words). However, Figures 9 and 10 provide a close-up of the
first 164,000 words, including Arabic. The datasets shown in Figures 7 and 8 all
consist of planned, written text, whereas the ECA corpus contains unplanned,
transcribed spontaneous speech. Because of these differences, the type of text
(planned or spontaneous) has been indicated explicitly in the new figures.

Additional sources have been provided for Arabic and English: planned
Arabic text from the FBIS corpus of Modern Standard Arabic (a collection of
transcribed radio newscasts from various radio stations in the Arabic-speaking
world) as well as spontaneous transcribed English telephone conversations
from the Fisher corpus.3 The point here is to illustrate that a smaller, slower
growing vocabulary is used in spontaneous speech than in planned speech.

3Available at http://www.ldc.upenn.edu/.

ACM Transactions on Speech and Language Processing, Vol. 5, No. 1, Article 3, Publication date: December 2007.

Creutz et al (2007)
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Segmenting into morphs

Linguistic rule-based approaches – require a lot of work for an under-resourced
language!

Automatic approaches – use automatically segment and cluster words into their
constitutent morphs

Morfessor (http://www.cis.hut.fi/projects/morpho/)

“Morfessor is an unsupervised data-driven method for the segmentation of words
into morpheme-like units.”
Aims to identify frequently occurring substrings of letters within either a word list
(type-based) or a corpus of text (token-based)
Uses a probabilistic framework to balance between few, short morphs and many,
longer morphs

Morph-based language modelling uses morphs instead of words – may require
longer context (since multiple morphs correspond to one word)
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Morph-based vs Word-based ASR

Speech recognition accuracies on Finnish (Fin1-Fin4), Estonian (Est), Turkish (Tur),
and Egyptian Arabic (ECA), using morph- and word-based n-gram language models.Morph-Based Speech Recognition • 3:11

Fig. 2. Word and letter accuracies for the different speech recognition test configurations.

Figure 2 shows that the morph models perform better than the word models
with the exception of the Arabic experiment (ECA) where the word model out-
performs the morph model. The statistical significance of these differences is
confirmed by one-tailed paired Wilcoxon signed-rank tests at the significance
level of 0.05.

Overall, the best performance is observed for the Finnish datasets, which is
explained by the speaker-dependent acoustic models and clean noise conditions.
Results are not as good for the speaker-independent models (Est, Tur1, Tur2,
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with the exception of the Arabic experiment (ECA) where the word model out-
performs the morph model. The statistical significance of these differences is
confirmed by one-tailed paired Wilcoxon signed-rank tests at the significance
level of 0.05.

Overall, the best performance is observed for the Finnish datasets, which is
explained by the speaker-dependent acoustic models and clean noise conditions.
Results are not as good for the speaker-independent models (Est, Tur1, Tur2,

ACM Transactions on Speech and Language Processing, Vol. 5, No. 1, Article 3, Publication date: December 2007.

letter accuracies

Creutz et al (2007)
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Speech recognition systems for low-resource languages

Transferring data between acoustic models based on multilingual hidden
representations

Grapheme-based pronunciation lexica

Morph-based language modeling

ASR Lecture 14 Multilingual and Low-Resource Speech Recognition 20



Reading

L Besaciera et al (2014). “Automatic speech recognition for under-resourced languages: A
survey”, Speech Communication, 56:85–100.
http://www.sciencedirect.com/science/article/pii/S0167639313000988
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