
Lattice-free MMI training

Peter Bell

Automatic Speech Recognition— ASR Lecture 12
28 February 2019

ASR Lecture 12 Lattice-free MMI training 1



This lecture

Motivating sequence training with the Maximum Mutual Information (MMI)
criterion

Fundamentals of MMI training

Lattice-based MMI

Purely sequence trained models

Practical implementation of LF-MMI training

ASR Lecture 12 Lattice-free MMI training 2



Some notation

λ Parameters of the acoustic model
X Sequence of acoustic observations
xt Observation at time t
Y Sequence of words
qt HMM hidden state at time t
j Index over HMM states
u Index over utterances
γj(t) Probability of being in state j at time t, given X

This may not exactly match notation in other lectures!

ASR Lecture 12 Lattice-free MMI training 3



Traditional approach

Use HMM-GMM as a generative sequence model

qt-1 qt qt+1

xt-1 xt xt+1

This is more for convenience than anything else

Great algorithms for:

finding P(qt |X ), the probability of being in state q at time t (forward-backward)

finding the most likely state sequence (Viterbi)

ASR Lecture 12 Lattice-free MMI training 4



Traditional approach

Use HMM-GMM as a generative sequence model

qt-1 qt qt+1

xt-1 xt xt+1

This is more for convenience than anything else

Great algorithms for:

finding P(qt |X ), the probability of being in state q at time t (forward-backward)

finding the most likely state sequence (Viterbi)

ASR Lecture 12 Lattice-free MMI training 4



Problem - HMM assumptions don’t hold in practice

Observations are absolutely not conditionally independent, given the hidden state

When states are phone-based, observations are not independent of past/future
phone states, given the current state

Two useful hacks:

Expand the state space to incorporate phonetic context (makes the decoder more
complicated, but we can cope...)

Augment the feature vector to incorporate adjacent acoustic features using deltas,
or feature splicing + linear transforms, attempting to keep individual elements
uncorrelated

Oops, this massively over-states the framewise probabilities, so throw in an acoustic
scaling fudge factor, κ, of about 1/12

ASR Lecture 12 Lattice-free MMI training 5



Problem - HMM assumptions don’t hold in practice

Observations are absolutely not conditionally independent, given the hidden state

When states are phone-based, observations are not independent of past/future
phone states, given the current state

Two useful hacks:

Expand the state space to incorporate phonetic context (makes the decoder more
complicated, but we can cope...)

Augment the feature vector to incorporate adjacent acoustic features using deltas,
or feature splicing + linear transforms, attempting to keep individual elements
uncorrelated

Oops, this massively over-states the framewise probabilities, so throw in an acoustic
scaling fudge factor, κ, of about 1/12

ASR Lecture 12 Lattice-free MMI training 5



Problem - HMM assumptions don’t hold in practice

Observations are absolutely not conditionally independent, given the hidden state

When states are phone-based, observations are not independent of past/future
phone states, given the current state

Two useful hacks:

Expand the state space to incorporate phonetic context (makes the decoder more
complicated, but we can cope...)

Augment the feature vector to incorporate adjacent acoustic features using deltas,
or feature splicing + linear transforms, attempting to keep individual elements
uncorrelated

Oops, this massively over-states the framewise probabilities, so throw in an acoustic
scaling fudge factor, κ, of about 1/12

ASR Lecture 12 Lattice-free MMI training 5



A quote

“[O]ur knowledge about speech is at such a primitive stage that if
we are not to be completely devastated by the problem of having
too many free parameters then any model of an informative
observation sequence will have to be based on some invalid
assumptions. This led us to an investigation of an alternative to
MLE, MMIE, which does not derive its raison d’etre from an
implicit assumption of model correctness.”

Peter Brown, 1987

ASR Lecture 12 Lattice-free MMI training 6



Switch training criterion

Maximum likelihood is theoretically optimal (even for classification), but only
when the model is correct

If not, an explicitly discriminative training criterion might be better

Minimum Classification Error (MCE) is a natural choice for classification, but not
for sequences

Try to maximise mutual information instead

ASR Lecture 12 Lattice-free MMI training 7



Switch training criterion

Maximum likelihood is theoretically optimal (even for classification), but only
when the model is correct

If not, an explicitly discriminative training criterion might be better

Minimum Classification Error (MCE) is a natural choice for classification, but not
for sequences

Try to maximise mutual information instead

ASR Lecture 12 Lattice-free MMI training 7



Switch training criterion

Maximum likelihood is theoretically optimal (even for classification), but only
when the model is correct

If not, an explicitly discriminative training criterion might be better

Minimum Classification Error (MCE) is a natural choice for classification, but not
for sequences

Try to maximise mutual information instead

ASR Lecture 12 Lattice-free MMI training 7



Switch training criterion

Maximum likelihood is theoretically optimal (even for classification), but only
when the model is correct

If not, an explicitly discriminative training criterion might be better

Minimum Classification Error (MCE) is a natural choice for classification, but not
for sequences

Try to maximise mutual information instead

ASR Lecture 12 Lattice-free MMI training 7



Discriminative training criteria

Maximum likelihood objective:

FML(λ) =
∑
u

log pλ(Xu|Wu)

Maximum mutual information objective:

FMMIE(λ) =
∑
u

log
p(Xu,Wu)

p(Xu)P(Wu)
=

∑
u

[
log

p(Xu,Wu)

p(Xu)
− logP(Wu)

]
=

∑
u

[
log

pλ(Xu|Wu)κP(Wu)∑
W pλ(Xu|W )κP(W )

− logP(Wu)
]

When P(W ) is constant, equivalent to conditional ML:

FCML(λ) =
∑
u

logP(Wu|Xu) =
∑
u

log
pλ(Xu|Wu)κP(Wu)∑
W pλ(Xu|W )κP(W )

ASR Lecture 12 Lattice-free MMI training 8



Discriminative training criteria

Maximum likelihood objective:

FML(λ) =
∑
u

log pλ(Xu|Wu)

Maximum mutual information objective:

FMMIE(λ) =
∑
u

log
p(Xu,Wu)

p(Xu)P(Wu)
=

∑
u

[
log

p(Xu,Wu)

p(Xu)
− logP(Wu)

]
=

∑
u

[
log

pλ(Xu|Wu)κP(Wu)∑
W pλ(Xu|W )κP(W )

− logP(Wu)
]

When P(W ) is constant, equivalent to conditional ML:

FCML(λ) =
∑
u

logP(Wu|Xu) =
∑
u

log
pλ(Xu|Wu)κP(Wu)∑
W pλ(Xu|W )κP(W )

ASR Lecture 12 Lattice-free MMI training 8



Discriminative training criteria

Maximum likelihood objective:

FML(λ) =
∑
u

log pλ(Xu|Wu)

Maximum mutual information objective:

FMMIE(λ) =
∑
u

log
p(Xu,Wu)

p(Xu)P(Wu)
=

∑
u

[
log

p(Xu,Wu)

p(Xu)
− logP(Wu)

]
=

∑
u

[
log

pλ(Xu|Wu)κP(Wu)∑
W pλ(Xu|W )κP(W )

− logP(Wu)
]

When P(W ) is constant, equivalent to conditional ML:

FCML(λ) =
∑
u

logP(Wu|Xu) =
∑
u

log
pλ(Xu|Wu)κP(Wu)∑
W pλ(Xu|W )κP(W )

ASR Lecture 12 Lattice-free MMI training 8



Example

−6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

ASR Lecture 12 Lattice-free MMI training 9



Full covariance Gaussian with ML training

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

ASR Lecture 12 Lattice-free MMI training 10



Diagonal covariance Gaussian with ML training

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

ASR Lecture 12 Lattice-free MMI training 11



Diagonal covariance Gaussian with MMI training

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

ASR Lecture 12 Lattice-free MMI training 12



Challenges of MMI

Frame-level models are good, but sequence-level models are poor ⇒ need to
operate at the sequence level.

It’s hard to estimate the denominator probabilities over a complete sequence∑
W

pλ(X |W )P(W )

for anything beyond small tasks

ASR Lecture 12 Lattice-free MMI training 13



Training with DNNs

DNNs are better at incorporating wider context because they can more easily
model correlated input features.
We’re still breaking the conditional independence assumption – a scaling factor
still needed
DNNs are normally trained discriminatively at the frame level using the
cross-entropy criterion
Fortunately we can apply sequence training with the MMI criterion in a very
similar way to traditional HMM-GMM systems

qt-1 qt qt+1

xt-1 xt xt+1
??

ASR Lecture 12 Lattice-free MMI training 14



The fundamentals of MMI training

Regardless of the method used, we need to compute two sets of occupancy
probabilities:

numerator: γnumj (t) = P(qt = j |Xu,Mnum
u )

denominator: γdenj (t) = P(qt = j |Xu,Mden
u )

Mnum
u represents the HMM state sequence corresponding to the transcription of

utterance u
Mden

u represents all possible HMM state sequences for u

Computing γdenj (t) is hard

Computing γnumj (t) is the standard forward-backward algorithm. (But we need to

make sure that the statistics are consistent with γdenj (t) )

ASR Lecture 12 Lattice-free MMI training 15



The fundamentals of MMI training

Regardless of the method used, we need to compute two sets of occupancy
probabilities:

numerator: γnumj (t) = P(qt = j |Xu,Mnum
u )

denominator: γdenj (t) = P(qt = j |Xu,Mden
u )

Mnum
u represents the HMM state sequence corresponding to the transcription of

utterance u
Mden

u represents all possible HMM state sequences for u

Computing γdenj (t) is hard

Computing γnumj (t) is the standard forward-backward algorithm. (But we need to

make sure that the statistics are consistent with γdenj (t) )

ASR Lecture 12 Lattice-free MMI training 15



The fundamentals of MMI training

Regardless of the method used, we need to compute two sets of occupancy
probabilities:

numerator: γnumj (t) = P(qt = j |Xu,Mnum
u )

denominator: γdenj (t) = P(qt = j |Xu,Mden
u )

Mnum
u represents the HMM state sequence corresponding to the transcription of

utterance u
Mden

u represents all possible HMM state sequences for u

Computing γdenj (t) is hard

Computing γnumj (t) is the standard forward-backward algorithm. (But we need to

make sure that the statistics are consistent with γdenj (t) )

ASR Lecture 12 Lattice-free MMI training 15



Using the occupancy probabilities

GMM: accumulate 0th, 1st and 2nd order statistics for numerator and
denominator

Λ
(0)
j (X ) =

∑
t

γj(t), Λ
(1)
j (X ) =

∑
t

γj(t)xt , Λ
(2)
j (X ) =

∑
t

γj(t)xtx
T
t

See Povey (2003) for full GMM update equations.

DNN:

∂FMMIE

∂ log p(xt |j)
= γnumj (t)− γdenj (t)

∂FMMIE

∂ log at(s)
=

∑
j

∂FMMIE

∂ log p(xt |j)
∂ log p(xt |j)
∂at(s)

=
∑
j

(γnumj (t)− γdenj (t))
∂ log p(xt |j)
∂at(s)

ASR Lecture 12 Lattice-free MMI training 16



Recap: the forward backward algorithm

Forward probability αj(t) = p(x1, . . . , xt |qt = j)

αj(t) =
∑
i

αi (t − 1)aijp(xt |qt = j)

Backward probability βj(t) = p(xt+1, . . . , xT |qt = j)

βi (t) =
∑
j

aijp(xt+1|qt+1 = j)βj(t + 1)

Then compute state occupancy as

γj(t) =
αj(t)βj(t)

αE (T )

ASR Lecture 12 Lattice-free MMI training 17



Lattice-based MMI

Approximate
∑

W with a sum over a lattice

Generate lattice for each utterance using an initial model

Use a weak language model

But attempt to minimise the size of the lattice

Derive phone arcs from the lattice

Lattice from www.cs.nyu.edu/~mohri/asr12/lecture_12.pdf

ASR Lecture 12 Lattice-free MMI training 18

www.cs.nyu.edu/~mohri/asr12/lecture_12.pdf


Forward-backward over lattices

Define forward and backward probabilities over phone arcs r with known start and end
times

αr =
∑
r ′→r

αr ′ar ′rp(r)

βr =
∑
r→r ′

arr ′p(r ′)β(r ′)

γr = αrβr

Where p(r) denotes the log likelihood over the arc
Use standard FB algorithm within arcs to compute state occupancies for time t

ASR Lecture 12 Lattice-free MMI training 19



LF-MMI

“Purely sequence-trained models for ASR based on

lattice-free MMI”

(Povey et al, 2016)

Solves a fundamental problem – a practical method for computing HMM “true”
state posteriors using a DNN acoustic model

Uses this to train a properly normalised sequence model, trained with MMI right
from the start

Removes the need for an acoustic scaling fudge factor

ASR Lecture 12 Lattice-free MMI training 20



LF-MMI

“Purely sequence-trained models for ASR based on

lattice-free MMI”

(Povey et al, 2016)

Solves a fundamental problem – a practical method for computing HMM “true”
state posteriors using a DNN acoustic model

Uses this to train a properly normalised sequence model, trained with MMI right
from the start

Removes the need for an acoustic scaling fudge factor

ASR Lecture 12 Lattice-free MMI training 20



Getting it to work...

The core idea

Both numerator and denominator state sequences are represented as HCLG FSTs

Parallelise denominator forward-backward computation on a GPU

Replace word-level LM with a 4-gram phone LM for efficiency

Reduce the frame rate

might be a good idea for other reasons...

Changes to HMM topology motivated by CTC (see Lecture 15)

ASR Lecture 12 Lattice-free MMI training 21



Getting it to work...

Extra tricks

Train on small fixed-size chunks (1.5s)

probably enough to counter the flaws in the conditional independence assumption

Careful optimisation of denominator FST to minimise the size

Various types of regularisation

ASR Lecture 12 Lattice-free MMI training 22



HMM topologies

Replace standard 3-state HMM with topology that can be traversed in a single frame

Standard topology

0 1 2

x1 x4x2 x3 x5 x6

3

LF-MMI topology

0

x1 x2

1

x3 x4

ASR Lecture 12 Lattice-free MMI training 23



Denominator FST

LM is essentially a 3-gram phone LM

No pruning and no backoff to minimise the size

Use of unpruned 3-grams means that there is always a 2-word history.
Minimises the size of the recognition graph when phonetic context is incorporated

Addition of a fixed number of the most common 4-grams

Conversion to HCLG FST in the normal way

HCLG size reduced by a series of FST reversal, weight pushing and minimisation
operations, followed by epsilon removal

ASR Lecture 12 Lattice-free MMI training 24



The normalisation FST

The phone-LM assumes that we are starting at the beginning of an utterance →
not suitable for use with 1.5s chunks

Need to adjust the initial probabilities for each HMM state

Iterate 100 times through the denominator FST to get better initial occupancy
probabilities

α
(n)
j (0) =

∑
i

aijα
(n−1)
i (0)

Add a new initial state to the denominator FST that connects to each state with
the new probabilities → the “normalisation FST”

ASR Lecture 12 Lattice-free MMI training 25



Numerator FST

The original paper

Used GMM system to generate lattices for training utterances, representing
alternate pronunciations

Lattice determines which phones are allowed to appear in which frames, with an
additional tolerance factor

Constraints encoded as an FST

Compose with the normalisation FST to ensure that the logprob objective
function is always < 0

0

1
76

24

2242

3

76

24

4

1975

51975

676

24

7242

8
76

24

91975

24

101975

1176

24
12

242

13
76

24

141975

24

151975

1676

24

17
76

24

24
1876

19

369

2076

2276

21

369

1737

2376

24
1

25

369
2676

1737

29

76

27
1

66

28329

301737

369

32
1

66

31329

4699

331737

34
329

3566

4699

361737

394699

329

4066

371737

414699

329

4266

381737 451737 471737

48

4708

43
4699

329

4466

464699
329

4708

494699

50

4708

3511
4708

513511

Fig. 2. Constrained numerator graph for a 48-frame chunk using tolerance = 3.

0

1
242

6

24

76

7

1975

242

8
24

76

2

369

41

24
1975

76

369

1737

3

4708

3511

66

5329

47084699

Fig. 3. Unconstrained numerator graph for a 48-frame chunk.

pletely unconstrained since we are still splitting the whole
utterance to small chunks, i.e., we are globally enforcing con-
straints but locally inside the chunks there is no constraint.
Note that we can’t skip the lattice generation and the time-
enforcer composition steps because otherwise we will not be
able to split the utterances into chunks.

To compare this approach with flat-start LF-MMI, we can
roughly consider them equivalent if the training data was al-
ready segmented to very short segments (e.g., 1.5 seconds).

4. EXPERIMENTAL SETUP

We use the open-source speech recognition toolkit Kaldi to
run the experiments. The experiments presented in this pa-
per are reproducible using this toolkit. We do most of our
experiments on the 300-hour Switchboard database [14]. We
evaluate on the Hub5 ’00 set (also known as eval2000) and the
RT03 test set. We also present results on TEDLIUM v2 [15],
Wall Street Journal (WSJ) [16], AMI [17] and Librispeech
[18].

4.1. Factorized TDNN

For the neural network, we use a factorized TDNN model. A
factorized TDNN has a similar structure as a vanilla TDNN,
except the weight matrices (of the layers) are factorized (using
SVD) into two factors, with one of them constrained to be
semi-orthonormal [7].

Constrained Unconstrained
Chunk size
(seconds) 1.5 1.5 3.0

eval2000 13.1 12.8 12.9
RT03 15.4 15.0 15.1

Table 1. Impact of chunk size. Word error rates (in %) are
shown for 2 test sets on the 300-hour Switchboard task.

In the experiments, we use exactly the same network
and hyper-parameters for comparing constrained and uncon-
strained supervisions.

5. RESULTS

5.1. Impact of chunk length

Since regular LF-MMI supervisions are constrained, the fi-
nal word error rates are not affected by chunk size. However,
chunk size can impact the training process for the proposed
unconstrained supervisions. Table 1 shows the results of us-
ing unconstrained supervisions on the 300-hour Switchboard
task for two different chunk sizes. We see a slight degrada-
tion when using a larger chunk size (i.e., 3 seconds). That is
expected, because of the extra freedom (and therefore uncer-
tainty) in each chunk.

5.2. Noisy data

Table 2 shows the effect of using unconstrained supervisions
on AMI – single distant microphone (SDM) case – which
is a noisy database. We can see the relative improvements
(in the first 2 rows) are small. Also, the last two rows show
a case where we use a HMM-GMM model trained on the in-
dividual headset microphones (IHM) training data to get the
lattice alignments for LF-MMI supervisions. Clearly, these
alignments are better; however, it seems that in this case, re-
moval of alignment information from the numerator graphs
has degraded the word error rate; perhaps because they pro-
vide a good starting point.

ASR Lecture 12 Lattice-free MMI training 26



Numerator FST

More recently, unconstrained numerator found to work better (Hadian, Povey et al,
IEEE SLT, 2018)

0

1
76

24

2242

3

76

24

4

1975

51975

676

24

7242

8
76

24

91975

24

101975

1176

24
12

242

13
76

24

141975

24

151975

1676

24

17
76

24

24
1876

19

369

2076

2276

21

369

1737

2376

24
1

25

369
2676

1737

29

76

27
1

66

28329

301737

369

32
1

66

31329

4699

331737

34
329

3566

4699

361737

394699

329

4066

371737

414699

329

4266

381737 451737 471737

48

4708

43
4699

329

4466

464699
329

4708

494699

50

4708

3511
4708

513511

Fig. 2. Constrained numerator graph for a 48-frame chunk using tolerance = 3.

0

1
242

6

24

76

7

1975

242

8
24

76

2

369

41

24
1975

76

369

1737

3

4708

3511

66

5329

47084699

Fig. 3. Unconstrained numerator graph for a 48-frame chunk.

pletely unconstrained since we are still splitting the whole
utterance to small chunks, i.e., we are globally enforcing con-
straints but locally inside the chunks there is no constraint.
Note that we can’t skip the lattice generation and the time-
enforcer composition steps because otherwise we will not be
able to split the utterances into chunks.

To compare this approach with flat-start LF-MMI, we can
roughly consider them equivalent if the training data was al-
ready segmented to very short segments (e.g., 1.5 seconds).

4. EXPERIMENTAL SETUP

We use the open-source speech recognition toolkit Kaldi to
run the experiments. The experiments presented in this pa-
per are reproducible using this toolkit. We do most of our
experiments on the 300-hour Switchboard database [14]. We
evaluate on the Hub5 ’00 set (also known as eval2000) and the
RT03 test set. We also present results on TEDLIUM v2 [15],
Wall Street Journal (WSJ) [16], AMI [17] and Librispeech
[18].

4.1. Factorized TDNN

For the neural network, we use a factorized TDNN model. A
factorized TDNN has a similar structure as a vanilla TDNN,
except the weight matrices (of the layers) are factorized (using
SVD) into two factors, with one of them constrained to be
semi-orthonormal [7].

Constrained Unconstrained
Chunk size
(seconds) 1.5 1.5 3.0

eval2000 13.1 12.8 12.9
RT03 15.4 15.0 15.1

Table 1. Impact of chunk size. Word error rates (in %) are
shown for 2 test sets on the 300-hour Switchboard task.

In the experiments, we use exactly the same network
and hyper-parameters for comparing constrained and uncon-
strained supervisions.

5. RESULTS

5.1. Impact of chunk length

Since regular LF-MMI supervisions are constrained, the fi-
nal word error rates are not affected by chunk size. However,
chunk size can impact the training process for the proposed
unconstrained supervisions. Table 1 shows the results of us-
ing unconstrained supervisions on the 300-hour Switchboard
task for two different chunk sizes. We see a slight degrada-
tion when using a larger chunk size (i.e., 3 seconds). That is
expected, because of the extra freedom (and therefore uncer-
tainty) in each chunk.

5.2. Noisy data

Table 2 shows the effect of using unconstrained supervisions
on AMI – single distant microphone (SDM) case – which
is a noisy database. We can see the relative improvements
(in the first 2 rows) are small. Also, the last two rows show
a case where we use a HMM-GMM model trained on the in-
dividual headset microphones (IHM) training data to get the
lattice alignments for LF-MMI supervisions. Clearly, these
alignments are better; however, it seems that in this case, re-
moval of alignment information from the numerator graphs
has degraded the word error rate; perhaps because they pro-
vide a good starting point.

ASR Lecture 12 Lattice-free MMI training 27



Specialised forward-backward algorithm

Work with probabilities rather than log-probabilities to avoid expensive log/exp
operations

Numeric overflow and underflow is a big problem

Two specialisations:

re-normalise probabilities at every time step
the “leaky HMM” - gradual forgetting of context

ASR Lecture 12 Lattice-free MMI training 28



Probability re-normalisation

Define
A(t) =

∑
i

αi (t)

Forward/backward passes become

αj(t) =
∑
i

αi (t − 1)aijp(xt |qt = j)/A(t)

βi (t) =
∑
j

aijp(xt+1|qt+1 = j)βj(t + 1)/A(t + 1)

Add a correction factor to the total log probability:

log p(X ) = logαE (T ) +
∑
t

logA(t)

ASR Lecture 12 Lattice-free MMI training 29



Leaky-HMM

The above is still susceptible to overflow in backward computation.
Introduce a leak-probability, η, of transition to any other state

Probability of transition to state i given by

ηαi (0)

(where these are the iterated occupancy probabilities)

Define α̂i (t) = αi (t) + ηA(t)αi (0)

Forwards pass:

αj(t) =
∑
i

α̂i (t − 1)aijp(xt |qt = j)/A(t)

p(X ) =
∑
i

α̂i (T )

ASR Lecture 12 Lattice-free MMI training 30



Leaky-HMM

The above is still susceptible to overflow in backward computation.
Introduce a leak-probability, η, of transition to any other state

Probability of transition to state i given by

ηαi (0)

(where these are the iterated occupancy probabilities)

Define α̂i (t) = αi (t) + ηA(t)αi (0)

Forwards pass:

αj(t) =
∑
i

α̂i (t − 1)aijp(xt |qt = j)/A(t)

p(X ) =
∑
i

α̂i (T )

ASR Lecture 12 Lattice-free MMI training 30



Leaky-HMM

The above is still susceptible to overflow in backward computation.
Introduce a leak-probability, η, of transition to any other state

Probability of transition to state i given by

ηαi (0)

(where these are the iterated occupancy probabilities)

Define α̂i (t) = αi (t) + ηA(t)αi (0)

Forwards pass:

αj(t) =
∑
i

α̂i (t − 1)aijp(xt |qt = j)/A(t)

p(X ) =
∑
i

α̂i (T )

ASR Lecture 12 Lattice-free MMI training 30



Leaky-HMM

The above is still susceptible to overflow in backward computation.
Introduce a leak-probability, η, of transition to any other state

Probability of transition to state i given by

ηαi (0)

(where these are the iterated occupancy probabilities)

Define α̂i (t) = αi (t) + ηA(t)αi (0)

Forwards pass:

αj(t) =
∑
i

α̂i (t − 1)aijp(xt |qt = j)/A(t)

p(X ) =
∑
i

α̂i (T )

ASR Lecture 12 Lattice-free MMI training 30



Leaky-HMM

Define backwards variables:

β̂i (T ) = 1/p(X )

B(t) = η
∑
i

αi (0)β̂i (t)

βi (t) = β̂i (t) + B(t)

Backwards recursion:

β̂i (t) =
∑
j

aijp(xt+1|qt+1 = j)βj(t + 1)/A(t + 1)

γj(t) =
∑
j

aij α̂i (t)p(xt |qt = j)βj(t + 1)/A(t)

ASR Lecture 12 Lattice-free MMI training 31



Regularisation

Use standard Cross-Entropy objective as a secondary task

all but the final hidden layer shared between tasks
use numerator posteriors for convenience

LF-MMI 
objective

Input
features

Cross-entropy 
objective

l2 norm penalty on the main output

Leaky HMM (mentioned earlier)

ASR Lecture 12 Lattice-free MMI training 32



Regularisation

Use standard Cross-Entropy objective as a secondary task

all but the final hidden layer shared between tasks
use numerator posteriors for convenience

LF-MMI 
objective

Input
features

Cross-entropy 
objective

l2 norm penalty on the main output

Leaky HMM (mentioned earlier)

ASR Lecture 12 Lattice-free MMI training 32



Regularisation

Use standard Cross-Entropy objective as a secondary task

all but the final hidden layer shared between tasks
use numerator posteriors for convenience

LF-MMI 
objective

Input
features

Cross-entropy 
objective

l2 norm penalty on the main output

Leaky HMM (mentioned earlier)

ASR Lecture 12 Lattice-free MMI training 32



Benefits of LF-MMI

Models are typically faster during training and decoding than standard models

Word error rates are generally lower

Ability to properly compute state posterior probabilities over arbitrary state
sequences also opens possibilities for

Semi-supervised training
Cross-model student-teacher training

where sequence information is critical

But – difficulties when training transcripts are unreliable

ASR Lecture 12 Lattice-free MMI training 33



Benefits of LF-MMI

Models are typically faster during training and decoding than standard models

Word error rates are generally lower

Ability to properly compute state posterior probabilities over arbitrary state
sequences also opens possibilities for

Semi-supervised training
Cross-model student-teacher training

where sequence information is critical

But – difficulties when training transcripts are unreliable

ASR Lecture 12 Lattice-free MMI training 33



LF-MMI results on Switchboard

Results on SWB portion of the Hub 5 2000 test set, trained on 300h training set.
Results use speed perturbation and i-vector based speaker adaptation.

Objective Model (size) WER (%)

CE TDNN-A (16.6M) 12.5
CE → sMBR TDNN-A (16.6M) 11.4

TDNN-A (9.8M) 10.7
LF-MMI TDNN-B (9.9M) 10.4

TDNN-C (11.2M) 10.2

LF-MMI → sMBR TDNN-C (11.2M) 10.0

See Povey et al (2016) for more results

ASR Lecture 12 Lattice-free MMI training 34



Background reading

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah Ghahrmani, Vimal Manohar, Xingyu
Na, Yiming Wang and Sanjeev Khudanpur, “Purely sequence-trained neural networks for ASR
based on lattice-free MMI” in Proc. Interspeech, 2016.

Hossein Hadian, Hossein Sameti, Daniel Povey, and Sanjeev Khudanpur, “Flat-start single-stage
discriminatively trained HMM-based models for ASR” in IEEE/ACM Transactions on Audio,
Speech and Language Processing, 2018

Hossein Hadian, Daniel Povey, Hossein Sameti, Jan Trmal, and Sanjeev Khudanpur, “Improving
LF-MMI using unconstrained supervisions for ASR” in Proc. IEEE SLT, 2018.

Karel Veselý, Arnab Ghoshal, Lukáš Burget and Daniel Povey, “Sequence-discriminative training
of deep neural networks”, in Proc. Interspeech, 2013.

Daniel Povey, “Discriminative Training for Large Vocabulary Speech Recognition”. Ph.D. thesis,
Cambridge University Engineering Department, 2003.

Yves Normandin and Salvatore D. Morgera, “An improved MMIE training algorithm for
speaker-independent, small vocabulary, continuous speech recognition” in Proc. ICASSP, 1991.

ASR Lecture 12 Lattice-free MMI training 35


