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Modelling acoustic context

DNNs allow the network to model acoustic context by including neighbouring
frame in the input layer – the output is thus estimating the phone or state
probability using that contextual information

Richer NN models of acoustic context
Time-delay neural networks (TDNNs)

each layer processes a context window from the previous layer
higher hidden layers have a wider receptive field into the input

Recurrent neural networks (RNNs)

hidden units at time t take input from their value at time t − 1
these recurrent connections allow the network to learn state

Both approaches try to learn invariances in time, and form representations based on
compressing the history of observations
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Recurrent network
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View an RNN for a sequence of T inputs as a T -layer network with shared weights

Train by doing backprop through this unfolded network
Recurrent hidden units are state units: can keep information through time

State units as memory – remember things for (potentially) an infinite time
State units as information compression – compress the history (sequence observed
up until now) into a state representation
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LSTM Recurrent Networks
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Simple recurrent network unit
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g(t) = W hxx(t) + W hhh(t − 1) + bh

h(t) = tanh (g(t))
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LSTM
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Internal recurrent state (“cell”)
c(t) combines previous state
c(t − 1) and LSTM input g(t)

Gates - weights dependent on the
current input and the previous state

Input gate: controls how much
input to the unit g(t) is written to
the internal state c(t)

Forget gate: controls how much of
the previous internal state c(t − 1)
is written to the internal state c(t)

Input and forget gates together
allow the network to control what
information is stored and
overwritten at each step
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LSTM – Internal recurrent state
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LSTM – Input Gate
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Internal recurrent state (“cell”)
c(t) combines previous state
c(t − 1) and LSTM input g(t)

Gates - weights dependent on the
current input and the previous state

Input gate: controls how much
input to the unit g(t) is written to
the internal state c(t)

Forget gate: controls how much of
the previous internal state c(t − 1)
is written to the internal state c(t)

Input and forget gates together
allow the network to control what
information is stored and
overwritten at each step
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LSTM – Forget Gate
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Internal recurrent state (“cell”)
c(t) combines previous state
c(t − 1) and LSTM input g(t)

Gates - weights dependent on the
current input and the previous state

Input gate: controls how much
input to the unit g(t) is written to
the internal state c(t)

Forget gate: controls how much of
the previous internal state c(t − 1)
is written to the internal state c(t)

Input and forget gates together
allow the network to control what
information is stored and
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LSTM – Input and Forget Gates
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Output gate: controls how much
of each unit’s activation is output
by the hidden state – it allows the
LSTM cell to keep information that
is not relevant at the current time,
but may be relevant later
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LSTM – Output Gate
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I(t; x(t), h(t-1))

Output gate: controls how much
of each unit’s activation is output
by the hidden state – it allows the
LSTM cell to keep information that
is not relevant at the current time,
but may be relevant later
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LSTM
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I (t) = σ (W ixx(t) + W ihh(t − 1) + bi )

F (t) = σ (W fxx(t) + W fhht − 1) + bf )

O(t) = σ (W oxx(t) + W ohh(t − 1) + bo)

g(t) = W hxx(t) + W hhh(t − 1) + bh

c(t) = F (t) ◦ c(t − 1) + I (t) ◦ g(t)

h(t) = O(t) ◦ tanh (c(t))

C Olah (2015), Understanding LSTMs,
http://colah.github.io/posts/

2015-08-Understanding-LSTMs/
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Bidirectional RNN

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt + Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt + Whiht�1 + Wcict�1 + bi) (3)
ft = � (Wxfxt + Whfht�1 + Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt + Whcht�1 + bc) (5)
ot = � (Wxoxt + Whoht�1 + Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h

xt + W�!
h
�!
h

�!
h t�1 + b�!

h

⌘
(8)

 �
h t = H

⇣
W

x
 �
h

xt + W �
h
 �
h

 �
h t+1 + b �

h

⌘
(9)

yt = W�!
h y

�!
h t + W �

h y

 �
h t + by (10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t + Whnhnhn
t�1 + bn

h

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhN yhN
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

274
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Deep RNN

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each yt defines a probability distribution over the
K possible states: that is, yk

t (the kth element of yt) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log yzt
t (13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)

@ŷk
t

= yk
t � �k,zt

(14)

where ŷt is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

275
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Deep Bidirectional LSTM
Fig. 3. Deep Recurrent Neural Network
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Example: Deep Bidirectional LSTM Acoustic Model (Switchboard)

LSTM has 4-6 bidirectional layers with 1024
cells/layer (512 each direction)

256 unit linear bottleneck layer

32k context-dependent state outputs

Input features

40-dimension linearly transformed MFCCs
(plus ivector)
64-dimension log mel filter bank features
(plus first and second derivatives)
concatenation of MFCC and FBANK features

Training: 14 passes frame-level cross-entropy training,
1 pass sequence training (2 weeks on a K80 GPU)

32,000 CD states
Softmax

256 Linear

1024 Bi-LSTM

1024 Bi-LSTM

1024 Bi-LSTM

1024 Bi-LSTM

Acoustic Features
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Switchboard Results

Test Set WER/%
Network Architecture Switchboard CallHome

GMM (ML) 21.2 36.4
GMM (BMMI) 18.6 33.0
DNN (7x2048) / CE 14.2 25.7
DNN (7x2048) / MMI 12.9 24.6
TDNN (6x1024) / CE 12.5
TDNN (6x576) / LF-MMI 9.2 17.3
LSTM (4x1024) 8.0 14.3
LSTM (6x1024) 7.7 14.0
LSTM-6 + feat fusion 7.2 12.7

GMM and DNN results - Vesely et al (2013); TDNN-CE results - Peddinti et al (2015);

TDNN/LF-MMI results - Povey et al (2016); LSTM results - Saon et al (2017)

Combining models, and with multiple RNN language models, WER reduced to 5.5/10.3%
(Saon et al, 2017)
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Sequence Discriminative Training
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Recall: Maximum likelihood estimation of HMMs

Maximum likelihood estimation (MLE) sets the parameters so as to maximize an
objective function FMLE:

FMLE =
U∑

u=1

logPλ(Xu | M(Wu))

for training utterances X1 . . .XU where Wu is the word sequence given by the
transcription of the uth utterance, M(Wu) is the corresponding HMM, and λ is
the set of HMM parameters
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Maximum mutual information estimation

Maximum mutual information estimation (MMIE) aims to directly maximise the
posterior probability (sometimes called conditional maximum likelihood). Using
the same notation as before, with P(w) representing the language model
probability of word sequence w :

FMMIE =
U∑

u=1

logPλ(M(Wu) | Xu)

=
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)
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Maximum mutual information estimation

FMMIE =
U∑

u=1

log
Pλ(Xu | M(Wu))P(Wu)∑
w ′ Pλ(Xu | M(w ′))P(w ′)

Numerator: likelihood of data given correct word sequence (“clamped” to
reference alignment)

Denominator: total likelihood of the data given all possible word sequences –
equivalent to summing over all possible word sequences estimated by the full
acoustic and language models in recognition. (“free”)

The objective function FMMIE is optimised by making the correct word sequence
likely (maximise the numerator), and all other word sequences unlikely (minimise
the denominator)
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Sequence training and lattices

Computing the denominator involves summing over all possible word sequences –
estimate by generating lattices, and summing over all words in the lattice

In practice also compute numerator statistics using lattices (useful for summing
multiple pronunciations)

Generate numerator and denominator lattices for every training utterance

Denominator lattice uses recognition setup (with a weaker language model)

Each word in the lattice is decoded to give a phone segmentation, and
forward-backward is then used to compute the state occupation probabilities

Lattices not usually re-computed during training
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MMIE is sequence discriminative training

Sequence: like forward-backward (MLE) training, the overall objective function is
at the sequence level – maximise the posterior probability of the word sequence
given the acoustics Pλ(M(Wu) | Xu)

Discriminative: unlike forward-backward (MLE) training the overall objective
function for MMIE is discriminative – to maximise MMI:

Maximise the numerator by increasing the likelihood of data given the correct word
sequence
Minimise the denominator by decreasing the total likelihood of the data given all
possible word sequences

This results in “pushing up” the correct word sequence, while “pulling down” the
rest
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MPE: Minimum phone error

Basic idea adjust the optimization criterion so it is directly related to word error
rate

Minimum phone error (MPE) criterion

A(W ,Wu) is the phone transcription accuracy of the sentence W given the
reference Wu

FMPE is a weighted average over all possible sentences w of the raw phone
accuracy

Although MPE optimizes a phone accuracy level, it does so in the context of a
word-level system: it is optimized by finding probable sentences with low phone
error rates

ASR Lecture 10 NNs for Acoustic Modelling 4: LSTMs, Seq Training 20



MPE: Minimum phone error

Basic idea adjust the optimization criterion so it is directly related to word error
rate

Minimum phone error (MPE) criterion

FMPE =
U∑

u=1

log

∑
W Pλ(Xu | M(W ))P(W )A(W ,Wu)∑

W ′ Pλ(Xu | M(W ′))P(W ′)

A(W ,Wu) is the phone transcription accuracy of the sentence W given the
reference Wu

FMPE is a weighted average over all possible sentences w of the raw phone
accuracy

Although MPE optimizes a phone accuracy level, it does so in the context of a
word-level system: it is optimized by finding probable sentences with low phone
error rates

ASR Lecture 10 NNs for Acoustic Modelling 4: LSTMs, Seq Training 20



MPE: Minimum phone error

Basic idea adjust the optimization criterion so it is directly related to word error
rate

Minimum phone error (MPE) criterion

FMMIE =
U∑

u=1

log

∑
WPλ(Xu | M(Wu))P(Wu)A(W ,Wu)∑

W ′ Pλ(Xu | M(W ′))P(W ′)

A(W ,Wu) is the phone transcription accuracy of the sentence W given the
reference Wu

FMPE is a weighted average over all possible sentences w of the raw phone
accuracy

Although MPE optimizes a phone accuracy level, it does so in the context of a
word-level system: it is optimized by finding probable sentences with low phone
error rates
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HMM/DNN systems

DNN-based systems are discriminative – the cross-entropy (CE) training criterion
with softmax output layer “pushes up” the correct label, and “pulls down”
competing labels

CE is a frame-based criterion – we would like a sequence level training criterion
for DNNs, operating at the word sequence level

Can we train DNN systems with an MMI-type objective function?
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HMM/DNN systems

DNN-based systems are discriminative – the cross-entropy (CE) training criterion
with softmax output layer “pushes up” the correct label, and “pulls down”
competing labels

CE is a frame-based criterion – we would like a sequence level training criterion
for DNNs, operating at the word sequence level

Can we train DNN systems with an MMI-type objective function? – Yes
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Sequence training of hybrid HMM/DNN systems

Forward- and back-propagation equations are structurally similar to forward and
backward recursions in HMM training

Initially train DNN framewise using cross-entropy (CE) error function

Use CE-trained model to generate alignments and lattices for sequence training
Use CE-trained weights to initialise weights for sequence training

Train using back-propagation with sequence training objective function (e.g.
MMI)
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Sequence training results on Switchboard (Kaldi)

Results on Switchboard “Hub 5 ’00” test set, trained on 300h training set, comparing maximum
likelihood (ML) and discriminative (BMMI) trained GMMs with framewise cross-entropy (CE)
and sequence trained (MMI) DNNs. GMM systems use speaker adaptive training (SAT).
All systems had 8859 tied triphone states.
GMMs – 200k Gaussians
DNNs – 6 hidden layers each with 2048 hidden units

SWB CHE Total

GMM ML (+SAT) 21.2 36.4 28.8
GMM BMMI (+SAT) 18.6 33.0 25.8

DNN CE 14.2 25.7 20.0
DNN MMI 12.9 24.6 18.8

Veseley et al, 2013.
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Summary

LSTM recurrent networks and TDNNs offer different ways to model temporal
context

LSTM and/or TDNN systems are currently state-of-the-art

Sequence training: discriminatively optimise GMM or DNN to a sentence
(sequence) level criterion rather than a frame level criterion

ML training of HMM/GMM – sequence-level, not discriminative
CE training of HMM/NN – discriminative at the frame level
MMI training of HMM/GMM or HMM/NN – discriminative at the sequence level

Usually initialise sequence discriminative training

HMM/GMM – first train using ML, followed by MMI
HMM/NN – first train at frame level (CE), followed by MMI
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Reading

Bidirectional LSTM acoustic model: Graves et al (2013), “Hybrid speech recognition with deep
bidirectional LSTM”, ASRU-2013. http://www.cs.toronto.edu/~graves/asru_2013.pdf

IBM Switchboard system: Saon et al (2017), “English Conversational Telephone Speech
Recognition by Humans and Machines”, Interspeech-2107.
https://arxiv.org/abs/1703.02136

HMM discriminative training: Sec 27.3.1 of: S Young (2008), “HMMs and Related Speech
Recognition Technologies”, in Springer Handbook of Speech Processing, Benesty, Sondhi and
Huang (eds), chapter 27, 539–557.
http://www.inf.ed.ac.uk/teaching/courses/asr/2010-11/restrict/Young.pdf

NN sequence training: K Vesely et al (2013), “Sequence-discriminative training of deep neural
networks”, Interspeech-2013,
http://homepages.inf.ed.ac.uk/aghoshal/pubs/is13-dnn_seq.pdf

Lattice-free MMI: D Povey et al (2016), “Purely sequence-trained neural networks for ASR based
on lattice-free MMI”, Interspeech-2016.
http://www.danielpovey.com/files/2016_interspeech_mmi.pdf; slides –
http://www.danielpovey.com/files/2016_interspeech_mmi_presentation.pptx (covered
in lecture 12)
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