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Modelling acoustic context

@ DNNs allow the network to model acoustic context by including neighbouring
frame in the input layer — the output is thus estimating the phone or state
probability using that contextual information

@ Richer NN models of acoustic context

o Time-delay neural networks (TDNNs)

@ each layer processes a context window from the previous layer
o higher hidden layers have a wider receptive field into the input

o Recurrent neural networks (RNNs)

@ hidden units at time t take input from their value at time t — 1
@ these recurrent connections allow the network to learn state

e Both approaches try to learn invariances in time, and form representations based on
compressing the history of observations
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Recurrent network
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@ View an RNN for a sequence of T inputs as a T-layer network with shared weights

@ Train by doing backprop through this unfolded network
@ Recurrent hidden units are state units: can keep information through time

o State units as memory — remember things for (potentially) an infinite time
o State units as information compression — compress the history (sequence observed
up until now) into a state representation
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LSTM Recurrent Networks
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Simple recurrent network unit
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LSTM — Internal recurrent state
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LSTM — Internal recurrent state
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c(t —1) and LSTM input g(t)

@ Gates - weights dependent on the
current input and the previous state
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LSTM — Input Gate

. 1 P — > e Internal recurrent state (“cell”)

| c(t) combines previous state
c(t —1) and LSTM input g(t)

@ Gates - weights dependent on the
current input and the previous state

o Input gate: controls how much
input to the unit g(t) is written to
the internal state c(t)
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LSTM — Forget Gate

e Internal recurrent state (“cell”)
c(t) combines previous state
c(t —1) and LSTM input g(t)

@ Gates - weights dependent on the
current input and the previous state

oft-1) :F(‘? (), h(t-1)] @ Input gate: controls how much
5 =t input to the unit g(t) is written to
the internal state c(t)
It x(t), h(t-1)) o Forget gate: controls how much of
the previous internal state c(t — 1)
is written to the internal state c(t)
e Input and forget gates together
Wi allow the network to control what
information is stored and
overwritten at each step
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LSTM — Input and Forget Gates
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LSTM — Output Gate

@ Output gate: controls how much
of each unit’s activation is output

F(; x(t), het-1)|

c(t-1) . .
x — by the hidden state — it allows the
&% LSTM cell to keep information that
; X(0), h(t-1)) is not relevant at the current time,

but may be relevant later
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Bidirectional RNN
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Deep RNN
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Deep Bidirectional LSTM
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Example: Deep Bidirectional LSTM Acoustic Model (Switchboard)

32,000 CD states
LSTM has 4-6 bidirectional layers with 1024 < Softmax >

cells/layer (512 each direction)
256 unit linear bottleneck layer 296 Linear

32k context-dependent state outputs db
1024 Bi-LSTM
Input features
e 40-dimension linearly transformed MFCCs db
(plUS iVeCtOr) 1024 Bi-LSTM
e 64-dimension log mel filter bank features
(plus first and second derivatives) 1024 Bi-LSTM
e concatenation of MFCC and FBANK features
Training: 14 passes frame-level cross-entropy training,
1 pass sequence training (2 weeks on a K80 GPU) T

Acoustic Features
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Switchboard Results

Test Set WER/%

Network Architecture Switchboard CallHome
GMM (ML) 21.2 36.4
GMM (BMMI) 18.6 33.0
DNN (7x2048) / C 14.2 25.7
DNN (7x2048) / MMI 12.9 24.6
TDNN (6x1024) / CE 12.5

TDNN (6x576) / LF-MMI 9.2 17.3
LSTM (4x1024) 8.0 14.3
LSTM (6x1024) 7.7 14.0
LSTM-6 + feat fusion 7.2 12.7

GMM and DNN results - Vesely et al (2013); TDNN-CE results - Peddinti et al (2015);
TDNN/LF-MMI results - Povey et al (2016); LSTM results - Saon et al (2017)

Combining models, and with multiple RNN language models, WER reduced to 5.5/10.3%
(Saon et al, 2017)
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Sequence Discriminative Training
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Recall: Maximum likelihood estimation of HMMs

e Maximum likelihood estimation (MLE) sets the parameters so as to maximize an
objective function Fyyg:

U
Fmie = log P(Xy | M(W,))

u=1

for training utterances X; ... Xy where W, is the word sequence given by the
transcription of the uth utterance, M(W,) is the corresponding HMM, and X is
the set of HMM parameters

ASR Lecture 10 15



Maximum mutual information estimation

e Maximum mutual information estimation (MMIE) aims to directly maximise the
posterior probability (sometimes called conditional maximum likelihood). Using
the same notation as before, with P(w) representing the language model
probability of word sequence w:

Fumie = ) log PAx(M(W,) | X,)

Xy \ M(W.,))P(W.)
 PA(Xy | M(w'))P(w')

>
St

W
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Maximum mutual information estimation

e Maximum mutual information estimation (MMIE) aims to directly maximise the
posterior probability (sometimes called conditional maximum likelihood). Using
the same notation as before, with P(w) representing the language model
probability of word sequence w:

U
Fumie = Y log PA(M(W,,) | X,)
u=1

(X, | M(W,))P(W.)
FuLE = Z o8 z PA(Xy | M(w)P(w)
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Maximum mutual information estimation

U
o P)\(xu | M(Wu))P(Wu)
FaMIE = 2108 575 o 1 () P(w)

u=1
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Maximum mutual information estimation

PAXy | M(W.))P(Wa)
2w PAXy | M(w'))P(w’)

Fmmie = Z'Og

e Numerator: likelihood of data given correct word sequence (“clamped” to
reference alignment)
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Maximum mutual information estimation

Pr(Xy | M(Wy))P(W,)
Fmmie = Z'Og S PA(Xy | M(w)P(w)

e Numerator: likelihood of data given correct word sequence (“clamped” to
reference alignment)

@ Denominator: total likelihood of the data given all possible word sequences —
equivalent to summing over all possible word sequences estimated by the full
acoustic and language models in recognition. (“free”)
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Maximum mutual information estimation

PA(Xy | M(W,))P(W,)
Fiavie = 2 8 S PR | M) P()

e Numerator: likelihood of data given correct word sequence (“clamped” to
reference alignment)

@ Denominator: total likelihood of the data given all possible word sequences —
equivalent to summing over all possible word sequences estimated by the full
acoustic and language models in recognition. (“free”)

@ The objective function Fyw g is optimised by making the correct word sequence
likely (maximise the numerator), and all other word sequences unlikely (minimise
the denominator)
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Sequence training and lattices

@ Computing the denominator involves summing over all possible word sequences —
estimate by generating lattices, and summing over all words in the lattice

@ In practice also compute numerator statistics using lattices (useful for summing
multiple pronunciations)

o Generate numerator and denominator lattices for every training utterance
e Denominator lattice uses recognition setup (with a weaker language model)

@ Each word in the lattice is decoded to give a phone segmentation, and
forward-backward is then used to compute the state occupation probabilities

o Lattices not usually re-computed during training
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MMIE is sequence discriminative training

@ Sequence: like forward-backward (MLE) training, the overall objective function is
at the sequence level — maximise the posterior probability of the word sequence
given the acoustics Py\(M(W,) | X,)

e Discriminative: unlike forward-backward (MLE) training the overall objective
function for MMIE is discriminative — to maximise MMI:

e Maximise the numerator by increasing the likelihood of data given the correct word
sequence
e Minimise the denominator by decreasing the total likelihood of the data given all
possible word sequences
This results in “pushing up” the correct word sequence, while “pulling down™ the
rest
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MPE: Minimum phone error

@ Basic idea adjust the optimization criterion so it is directly related to word error
rate

@ Minimum phone error (MPE) criterion

ASR Lecture 10 20



MPE: Minimum phone error

@ Basic idea adjust the optimization criterion so it is directly related to word error
rate

@ Minimum phone error (MPE) criterion

U
&, S A | MOW))PW)AW, W)
Fupe = 2 _1og =5 0 (%, T MW} (W)

e A(W,W,) is the phone transcription accuracy of the sentence W given the
reference W,
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MPE: Minimum phone error

@ Basic idea adjust the optimization criterion so it is directly related to word error
rate

@ Minimum phone error (MPE) criterion

U
L& TP | MOW)P(W AW, W)
Funie = 2_log = T MW P(W)

e A(W,W,) is the phone transcription accuracy of the sentence W given the
reference W,
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MPE: Minimum phone error

@ Basic idea adjust the optimization criterion so it is directly related to word error
rate
@ Minimum phone error (MPE) criterion

U
&, S A | MOW))PW)AW, W)
Fupe = 2 _1og =5 0 (%, T MW} (W)

e A(W,W,) is the phone transcription accuracy of the sentence W given the
reference W,

@ FpmpE is a weighted average over all possible sentences w of the raw phone
accuracy

@ Although MPE optimizes a phone accuracy level, it does so in the context of a
word-level system: it is optimized by finding probable sentences with low phone
error rates
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HMM /DNN systems

@ DNN-based systems are discriminative — the cross-entropy (CE) training criterion
with softmax output layer “pushes up” the correct label, and “pulls down”
competing labels

@ CE is a frame-based criterion — we would like a sequence level training criterion
for DNNs, operating at the word sequence level

@ Can we train DNN systems with an MMI-type objective function?
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HMM /DNN systems

@ DNN-based systems are discriminative — the cross-entropy (CE) training criterion
with softmax output layer “pushes up” the correct label, and “pulls down”
competing labels

@ CE is a frame-based criterion — we would like a sequence level training criterion
for DNNs, operating at the word sequence level

@ Can we train DNN systems with an MMI-type objective function? — Yes
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Sequence training of hybrid HMM /DNN systems

o Forward- and back-propagation equations are structurally similar to forward and
backward recursions in HMM training
e Initially train DNN framewise using cross-entropy (CE) error function
o Use CE-trained model to generate alignments and lattices for sequence training
o Use CE-trained weights to initialise weights for sequence training

@ Train using back-propagation with sequence training objective function (e.g.
MMI)
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Sequence training results on Switchboard (Kaldi)

Results on Switchboard “Hub 5 '00” test set, trained on 300h training set, comparing maximum
likelihood (ML) and discriminative (BMMI) trained GMMs with framewise cross-entropy (CE)
and sequence trained (MMI) DNNs. GMM systems use speaker adaptive training (SAT).

All systems had 8859 tied triphone states.

GMMs — 200k Gaussians

DNNs — 6 hidden layers each with 2048 hidden units

SWB | CHE | Total
GMM ML (+SAT) | 21.2 | 36.4 | 28.8
GMM BMMI (4SAT) | 18.6 | 33.0 | 25.8
DNN CE | 14.2 | 25.7 | 20.0

DNN MMI | 129 | 246 | 18.8

Veseley et al, 2013.
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@ LSTM recurrent networks and TDNNs offer different ways to model temporal
context

LSTM and/or TDNN systems are currently state-of-the-art
Sequence training: discriminatively optimise GMM or DNN to a sentence
(sequence) level criterion rather than a frame level criterion

e ML training of HMM/GMM - sequence-level, not discriminative

o CE training of HMM/NN - discriminative at the frame level

o MMI training of HMM/GMM or HMM/NN — discriminative at the sequence level
Usually initialise sequence discriminative training

o HMM/GMM - first train using ML, followed by MMI
o HMM/NN — first train at frame level (CE), followed by MMI
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Bidirectional LSTM acoustic model: Graves et al (2013), “Hybrid speech recognition with deep
bidirectional LSTM", ASRU-2013. http://www.cs.toronto.edu/~graves/asru_2013.pdf
IBM Switchboard system: Saon et al (2017), “English Conversational Telephone Speech
Recognition by Humans and Machines”, Interspeech-2107.
https://arxiv.org/abs/1703.02136

HMM discriminative training: Sec 27.3.1 of: S Young (2008), “HMMs and Related Speech
Recognition Technologies”, in Springer Handbook of Speech Processing, Benesty, Sondhi and
Huang (eds), chapter 27, 539-557.
http://www.inf.ed.ac.uk/teaching/courses/asr/2010-11/restrict/Young.pdf

NN sequence training: K Vesely et al (2013), “Sequence-discriminative training of deep neural
networks”, Interspeech-2013,
http://homepages.inf.ed.ac.uk/aghoshal/pubs/is13-dnn_seq.pdf

Lattice-free MMI: D Povey et al (2016), “Purely sequence-trained neural networks for ASR based
on lattice-free MMI", Interspeech-2016.
http://www.danielpovey.com/files/2016_interspeech_mmi.pdf; slides —
http://www.danielpovey.com/files/2016_interspeech_mmi_presentation.pptx (covered
in lecture 12)
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