
v. 1.0

Lab 3: Word recognition and triphone models

University of Edinburgh

February 5, 2018

So far we have been working with phone recognition on TIMIT. In this lab
we will move instead to word recognition. This requires a word-level language
model, for which we will be using the Wall Street Journal (WSJ) language model.

Path errors

If you get errors such as command not found, try sourcing the path again:

source path.sh

In general, every time you open a new terminal window and cd to the
work directory, you would need to source the path file in order to use any
of the Kaldi binaries.

There is an appendix at the end of every lab with the most typical mis-
takes.

1 Word recognition

Let’s begin by opening a terminal window, cd to your workdir and sourcing the
path:

cd ~/asrworkdir

source path.sh

Before we start building new models run the following script to gather some
new files we need to do word recognition:

./local/lab3_setup.sh

The message “lab 3 preparation succeeded” should appear.

1

1.1 Word-level language model

When you ran the above command it will have generated a new language model
directory: data/lang wsj, new training and test directories, and a monophone
experiment directory that we have trained for you already.

There’s a crucial difference to the new language model directory from the
previous one. Compare the words.txt file in each:

less data/lang/words.txt

less data/lang_wsj/words.txt

What is different between the two? Let’s also have a look at the new phone-
set:

less data/lang_wsj/phones.txt

Our phones are now dependent upon where they occur in the words. For an
explanation of the suffixes, see

less data/lang_wsj/phones/word_boundary.txt

To see how this relates to the lexicon, open the following file:

less data/lang_wsj/phones/align_lexicon.txt

Now search (remember /) for “^ SPEECH”, which will show the first occur-
rence of a word that starts with “SPEECH”. How does the mapping relate to the
position-dependent phones we saw above?

Finally, have a look at the new training directory which now maps from
utterance to words instead of phones:

less data/train_words/text

1.2 Monophone models

We have provided monophone models and alignments, as well as a decode on
the test set. These are placed in exp/words/mono and exp/words/mono ali.

Have a look at the score for the decode on the test set:

more exp/word/mono/decode_test/scoring_kaldi/best_wer

2

more

The command more is very similar to less, apart from that it prints the
output to the console directly.

Ok! There’s lots of room for improvement...

1.3 Triphone models

Let’s start training a triphone model with delta and delta-delta features.

Backslashes

Backslashes in Bash (\) which is present in the next box, are simply a
way of splitting commands over multiple lines. That is, the following two
commands are identical:

some_script.sh --some-option somefile.txt

and

some_script.sh --some-option \

somefile.txt

You may remove the backslash and type these commands on a single line.
But sometimes when writing scripts, avoiding too long commands on a
single line can help readability.

Be careful about spaces after \. Bash will expect a newline immediately,
and a space here before the newline will make a script crash.

Run the following command to train a triphone system. This might take a
few minutes...

steps/train_deltas.sh 2500 15000 data/train_words \

data/lang_wsj exp/word/mono_ali exp/word/tri1

• While that is running, open another terminal window, change directory
to the work directory and source the path.

1.4 Delta features

Above we started running a script called train deltas.sh. This trains triphone
models on top of MFCC+delta+deltadelta features. To avoid having to store
features with delta+deltadelta applied, Kaldi adds this in an online fashion,
just as another pipe, using the programme add-deltas. Remember how we
checked the feature dimension of the features in the first lab? Run the following
command.

3

feat-to-dim scp:data/train/feats.scp -

What do you expect the dimension to be be after applying add-deltas?
Run the following command.

add-deltas scp:data/test/feats.scp ark:- | feat-to-dim ark:- -

1.5 Logs

Kaldi creates detailed logs during training. These can be very helpful when
things go wrong. By now we should have some of the first ones created for the
triphone training:

less exp/word/tri1/log/acc.1.1.log

Notice that on the top, the entire command which Kaldi ran (as set out by
the script) is displayed. For this example it runs a command called gmm-acc-stats-ali,
and then if you look closely there is a feature pipeline using the programmes
apply-cmvn and add-deltas which applies these transforms and additions to
the features in an online fashion.

1.6 Triphones

When we ran the triphone modelling script above we also passed two numbers,
2500 and 15000. These are respectively the number of leaves in the decision tree
and the total number of Gaussians across all states in our model.

Triphone clustering

As you may recall from the lectures, having a separate model for each
triphone is generally not feasible. With typically 48 phones we would
require 48 × 48 × 48, i.e. more than 110000 models. We don’t have
enough data to see all those, so we cluster them using a decision tree.
The number of leaves parameter then sets the maximum number of leaves
in the decision tree, and the number of gaussians the maximum number
of Gaussians distributed across the leaves. So on average our model will
have an average of numgauss

numleaves Gaussians per leaf.

To see how many states have been seen, run the following command:

sum-tree-stats --binary=False - \

exp/word/tri1/1.treeacc | head -1

4

The first number indicates the number of states with statistics. Dividing
that number by three will roughly give the number of seen triphones (why is
this?).

Let’s have a closer look at the clustering in Kaldi. It’s also a good opportu-
nity to look a bit deeper at the Kaldi scripts. Open the training script we just
ran by typing

less steps/train_deltas.sh

At the top is a configuration section with several default parameters. These
are the parameters that the script can take by passing --param setting to the
script when running it. Most scripts in Kaldi are set up this way. The first one
is a variable called stage, this can be really useful to start a script partway
through. Scroll down till line 88 which says

if [$stage -le 2]; then

This is saying that if the stage variable is less than or equal to two, run this
section. This is the section that builds the decision tree. It first calls a binary
called cluster-phones, this uses e.g. k-means clustering to cluster similar
phones. These clusters will be the basis for the questions in the decision tree.
Kaldi doesn’t use predefined questions such as “is the left phone a fricative?”,
but rather estimates them from the data. It writes these using the numeric
phone identities to a file called exp/word/tri1/questions.int. Let’s look at
it using a utility that maps the integer phone identities to their more readable
names. Leave less by pressing q and run the next command:

utils/int2sym.pl data/lang_wsj/phones.txt \

exp/word/tri1/questions.int | less

Each line is a cluster. Some of these clusters are really large, but hopefully
some of them should make sense. We use these to build a clustering tree, stored
in exp/word/tri1/tree. Exit less and run the following command:

copy-tree --binary=false exp/word/tri1/tree - | less

This file sets out the entire clustering tree. We’ll only get a gist of what it
represents by looking at a few lines. The further down this file, the deeper we
move into the tree. Move down to line 50 by typing the following letters on the
keyboard while in less:

50g

You should see a line that says

SE 0 [40 41 42 43 92 93 94 95 96 97 98 99 228 229 230 231]

5

The numbers in the brackets are phones. By now you should be able to
figure out which phones these represent (hint: language directory). SE stands
for “SplitEventMap”, which is essentially a split in the tree. The following
number is typically either 0, 1, or 2, and they stand for left, centre and right.
That is, for this line we are asking whether the left (0) phone is one of 40, 41,
42, ..., 231. If that is true, we

• proceed to the next line, asking whether the left phone is one of [40,41,42,43],
if that is true we

• proceed to the next line, this time asking whether the right (2) context is
one of [1,2,3,4,5] (which phone is this?)

Finally, we proceed to the next line where CE stands for a ConstantEventMap
and indicates a leaf in tree. If our previous question was true then we choose
pdf-id 1302, and if not, we choose 1091. The subtree we have been looking at
is illustrated in Figure 1. Can you tell how we would get pdf-id 1039?

SE
0 (left) = [40 41 42 ... 231]

SE
0 (left) = [40 41 42 43]

SE
2 (right) = [1 2 3 4 5]

CE
pdf-id = 1302

CE
pdf-id = 1091

CE
pdf-id = 1039

true

truefalse

false

false true

Figure 1: Tree clustering example

Ok, by now the triphone system should have finished training. Let’s create
a decoding graph and decode our triphone system, this may take a few minutes:

utils/mkgraph.sh data/lang_wsj_test_bg \

exp/word/tri1 exp/word/tri1/graph

steps/decode.sh --nj 4 exp/word/tri1/graph \

data/test_words exp/word/tri1/decode_test

6

When the decoding have finished, score the directory by running:

local/score_words.sh data/test_words exp/word/tri1/graph \

exp/word/tri1/decode_test

We can then have a look at the WER by typing:

more exp/word/tri1/decode_test/scoring_kaldi/best_wer

That should be considerably better than the monophone system, but there’s
still lots of room for improvement. The typical progression in Kaldi would now
be to train a system on top of decorrelated features and then train a system
with speaker adaptive training. But that’s for another lab...

We’re done! Next time we’ll look at training hybrid neural network models.

1.7 Appendix: Common errors

• Forgot to source path.sh, check current path with echo $PATH

• No space left on disk: check df -h

• No memory left: check top or htop

• Lost permissions reading or writing from/to AFS: run kinit && aklog.
To avoid this, run long jobs with the longjob command.

• Syntax error: check syntax of a Bash script without running it using bash

-n scriptname

• Avoid spaces after \when splitting Bash commands over multiple lines

• Optional params:

• command line utilities: --param=value

• shell scripts: --param value

• Most file paths are absolute: make sure to update the paths if moving
data directories

• Search the forums: http://kaldi-asr.org/forums.html

• Search the old forums: https://sourceforge.net/p/kaldi/discussion

7

1.8 Appendix: UNIX

• cd dir - change directory to dir, or the enclosing directory by ..

• cd - - change to previous directory

• ls -l - see directory contents

• less script.sh - view the contents of script.sh

• head -l and tail -l - show first or last l lines of a file

• grep text file - search for text in file

• wc -l file - compute number of lines in file

8

