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Three levels of model

e Acoustic model P(X | Q)
Probability of the acoustics given the phone states:
context-dependent HMMs using state clustering, phonetic
decision trees, etc.

e Pronunciation model P(Q | W)
Probability of the phone states given the words; may be as
simple a dictionary of pronunciations, or a more complex
model

e Language model P(W)
Probability of a sequence of words. Typically an n-gram
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Pronunciation dictionary

@ Words and their pronunciations provide the link between
sub-word HMMs and language models

@ Written by human experts

@ Typically based on phones
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Pronunciation dictionary

Words and their pronunciations provide the link between
sub-word HMMs and language models

Written by human experts

Typically based on phones

Constructing a dictionary involves
@ Selection of the words in the dictionary—want to ensure high
coverage of words in test data
@ Representation of the pronunciation(s) of each word

Explicit modelling of pronunciation variation
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Out-of-vocabulary (OOV) rate

@ OOV rate: percent of word tokens in test data that are not
contained in the ASR system dictionary

@ Training vocabulary requires pronunciations for all words in
training data (since training requires an HMM to be
constructed for each training utterance)

@ Select the recognition vocabulary to minimize the OOV rate
(by testing on development data)

@ Recognition vocabulary may be different to training vocabulary

@ Empirical result: each OOV word results in 1.5-2 extra errors
(>1 due to the loss of contextual information)
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Multilingual aspects

@ Many languages are morphologically richer than English: this
has a major effect of vocabulary construction and language
modelling

e Compounding (eg German): decompose compound words into
constituent parts, and carry out pronunciation and language
modelling on the decomposed parts

e Highly inflected languages (eg Arabic, Slavic languages):
specific components for modelling inflection (eg factored
language models)

@ Inflecting and compounding languages (eg Finnish)

@ All approaches aim to reduce ASR errors by reducing the
OOV rate through modelling at the morph level; also
addresses data sparsity
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Single and multiple pronunciations

@ Words may have multiple pronunciations:
@ Accent, dialect: tomato, zebra

global changes to dictionary based on consistent pronunciation
variations

@ Phonological phenomena: handbag/ h ae m b ae g
I can't stay / [ah k ae n s t ay]
© Part of speech: project, excuse
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@ This seems to imply many pronunciations per word, including:
@ Global transform based on speaker characteristics

@ Context-dependent pronunciation models, encoding of
phonological phenomena
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Single and multiple pronunciations

@ Words may have multiple pronunciations:
@ Accent, dialect: tomato, zebra

global changes to dictionary based on consistent pronunciation
variations

@ Phonological phenomena: handbag/ h ae m b ae g
I can't stay / [ah k ae n s t ay]
© Part of speech: project, excuse
@ This seems to imply many pronunciations per word, including:
@ Global transform based on speaker characteristics

@ Context-dependent pronunciation models, encoding of
phonological phenomena

@ BUT state-of-the-art large vocabulary systems average about

1.1 pronunciations per word: most words have a single
pronunciation
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Consistency vs Fidelity

@ Empirical finding: adding pronunciation variants can result in
reduced accuracy

@ Adding pronunciations gives more “flexibility” to word models
and increases the number of potential ambiguities—more
possible state sequences to match the observed acoustics
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Consistency vs Fidelity

@ Empirical finding: adding pronunciation variants can result in
reduced accuracy

@ Adding pronunciations gives more “flexibility” to word models
and increases the number of potential ambiguities—more
possible state sequences to match the observed acoustics

@ Speech recognition uses a consistent rather than a faithful
representation of pronunciations

@ A consistent representation requires only that the same word
has the same phonemic representation (possibly with
alternates): the training data need only be transcribed at the
word level

@ A faithful phonemic representation requires a detailed
phonetic transcription of the training speech (much too
expensive for large training data sets)
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Current topics in pronunciation modelling

@ Automatic learning of pronunciation variations or alternative
pronunciations for some words — e.g. learning probability
distribution over possible pronunciations generated by
grapheme-to-phoneme models

e Automatic learning of pronunciations of new words based on
an initial seed lexicon

@ Joint learning of the inventory of subword units and the
pronunciation lexicon

@ Sub-phonetic / articulatory feature model

@ Grapheme-based modelling: model at the character level and
remove the problem of pronunciation modelling entirely
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Statistical language models

@ Basic idea The language model is the prior probability of the
word sequence P(W)

@ Statistical language models: cover “ungrammatical”
utterances, computationally efficient, trainable from huge
amounts of data, can assign a probability to a sentence
fragment as well as a whole sentence

@ Until very recently n-grams were the state-of-the-art
language model for ASR

Unsophisticated, linguistically implausible

Short, finite context

Model solely at the shallow word level

But: wide coverage, able to deal with “ungrammatical”
strings, statistical and scaleable

@ In an n-gram, the probability of a word depends only on the
identity of that word and of the preceding n-1 words. These
short sequences of n words are called n-grams.
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Bigram language model

@ Word sequence W = wy, wo, ... wy
P(W) = P(w1)P(wy | wi)P(ws | wi, wp)
o P(wpy | wa, wa, o wy—1)
@ Bigram approximation—consider only one word of context:

P(W) ~ P(W]_)P(W2 ’ W1)P(W3 | W2)... P(WM | WM—l)
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Bigram language model

@ Word sequence W = wy, wo, ... wy

P(W) = P(w1)P(w2 | w1)P(ws | wa, w2)
o P(wpy | wa, wa, o wy—1)
@ Bigram approximation—consider only one word of context:
P(W) ~ P(wy)P(wy | wi)P(ws | wa) ... P(wy | wy—1)
@ Parameters of a bigram are the conditional probabilities
P(w; | wi)
@ Maximum likelihood estimates by counting:
c(wj, w;)
c(w;)
where c(w;, w;j) is the number of observations of w; followed

by wj, and c(w;) is the number of observations of w;
(irrespective of what follows)

P(wjlw;) ~
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The zero probability problem

@ Maximum likelihood estimation is based on counts of words in
the training data

@ If a n-gram is not observed, it will have a count of 0—and the
maximum likelihood probability estimate will be 0

@ The zero probability problem: just because something does
not occur in the training data does not mean that it will not
occur

@ As n grows larger, so the data grow sparser, and the more
zero counts there will be
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The zero probability problem

@ Maximum likelihood estimation is based on counts of words in
the training data

@ If a n-gram is not observed, it will have a count of 0—and the
maximum likelihood probability estimate will be 0

@ The zero probability problem: just because something does
not occur in the training data does not mean that it will not
occur

@ As n grows larger, so the data grow sparser, and the more
zero counts there will be

@ Solution: smooth the probability estimates so that unobserved
events do not have a zero probability

@ Since probabilities sum to 1, this means that some probability
is redistributed from observed to unobserved n-grams
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Smoothing language models

@ What is the probability of an unseen n-gram?
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Smoothing language models

@ What is the probability of an unseen n-gram?
@ Add-one smoothing: add one to all counts and renormalize.
e “Discounts” non-zero counts and redistributes to zero counts
e Since most n-grams are unseen (for large n more types than
tokens!) this gives too much probability to unseen n-grams
(discussed in Manning and Schiitze)
@ Absolute discounting: subtract a constant from the observed
(non-zero count) n-grams, and redistribute this subtracted
probability over the unseen n-grams (zero counts)

@ Kneser-Ney smoothing: family of smoothing methods based
on absolute discounting that are at the state of the art
(Goodman, 2001)
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Backing off

@ How is the probability distributed over unseen events?

@ Basic idea: estimate the probability of an unseen n-gram using
the (n-1)-gram estimate

@ Use successively less context: trigram — bigram — unigram

o Back-off models redistribute the probability “freed” by
discounting the n-gram counts
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Backing off

@ How is the probability distributed over unseen events?

@ Basic idea: estimate the probability of an unseen n-gram using
the (n-1)-gram estimate

@ Use successively less context: trigram — bigram — unigram

o Back-off models redistribute the probability “freed” by
discounting the n-gram counts

e For a bigram

c(wj,w;)—D .
P(VVJ|W,):W |fC(W,',VVJ')>C
= P(w;)by, otherwise

c is the count threshold, and D is the discount. by, is the
backoff weight required for normalization
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Interpolation

Basic idea: Mix the probability estimates from all the
estimators: estimate the trigram probability by mixing
together trigram, bigram, unigram estimates

Simple interpolation

A

P(Wn | Wn—2, anl) =
)\3P(Wn | Wn—2, anl) + )\2P(Wn | anl) =+ )‘1P(Wn)
With S0, = 1

Interpolation with coefficients conditioned on the context

A

P(Wn ’ Wn-2, Wn—l) =
)\3(Wn—2> Wn—l)P(Wn ’ Wn—2, Wn—1)+
)\2(an27 anl)P(Wn | anl) + )\1(an27 anl)P(Wn)

Set A values to maximise the likelihood of the interpolated

language model generating a held-out corpus (possible to use
EM to do this)
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Perplexity

Measure the quality of a language model by how well it
predicts a test set W (i.e. estimated probability of word
sequence)

Perplexity (PP(W)) — inverse probability of the test set WV,
normalized by the number of words N

PP(W) = P(W)T = P(wiws...wy) N
Perplexity of a bigram LM
PP(W) = (P(W]_)P(WQ’W]_)P(W3‘W2) e P(W/\/’W/\/,l))iw:l

Example perplexities for different n-gram LMs trained on Wall
St Journal (38M words)

e Unigram — 962

e Bigram - 170

e Trigram — 109
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Distributed representation for language modelling

@ Each word is associated with a learned distributed
representation (feature vector)

@ Use a neural network to estimate the conditional probability of
the next word given the the distributed representations of the
context words

@ Learn the distributed representations and the weights of the
conditional probability estimate jointly by maximising the log
likelihood of the training data

e Similar words (distributionally) will have similar feature vectors
— small change in feature vector will result in small change in
probability estimate (since the NN is a smooth function)
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Neural Probabilistic Language Model
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Neural Probabilistic Language Model

@ Train using stochastic gradient ascent to maximise log
likelihood

@ Number of free parameters (weights) scales

e Linearly with vocabulary size
o Linearly with context size

@ Can be (linearly) interpolated with n-gram model

@ Perplexity results on AP News (14M words training).

|V| =18k
model ‘ n ‘ perplexity
NPLM(100,60) | 6 109
n-gram (KN) 3 127
n-gram (KN) 4 119
n-gram (KN) 5 117
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Shortlists

@ Reduce computation by only including the s most frequent
words at the output — the shortlist (S) (full vocabulary still
used for context)

@ Use an n-gram model to estimate probabilities of words not in
the shortlist

@ Neural network thus redistributes probability for the words in
the shortlist

Ps(he) = P(wlh)

weS
o PNN(Wt|ht)PS(ht) Ith S 5
P(welhe) = { Py (we|he) else

@ In a |V| =50k task a 1024 word shortlist covers 89% of
4-grams, 4096 words covers 97%
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NPLM — ASR results

Speech recognition results on Switchboard
7M / 12M / 27M words in domain data.
500M words background data (broadcast news)
Vocab size |V| = b1k, Shortlist size |S| = 12k

WER/%
in-domain words | 7M | 12M | 27M
KN (in-domain) | 25.3 | 23.0 | 20.0
NN (in-domain) | 24.5 | 22.2 | 19.1
KN (+b/g) | 24.1 | 22.3 | 19.3
NN (+b/g) | 23.7 | 21.8 | 18.9
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@ Pronunciation dictionaries
@ n-gram language models

@ Neural network language models
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@ Jurafsky and Martin, chapter 4

@ Y Bengio et al (2006), “Neural probabilistic language models”
(sections 6.1, 6.2, 6.3, 6.6, 6.7, 6.8), Studies in Fuzziness and
Soft Computing Volume 194, Springer, chapter 6. http://
link.springer.com/chapter/10.1007/3-540-33486-6_6
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