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Three levels of model

Acoustic model P(X | Q)
Probability of the acoustics given the phone states:
context-dependent HMMs using state clustering, phonetic
decision trees, etc.

Pronunciation model P(Q |W )
Probability of the phone states given the words; may be as
simple a dictionary of pronunciations, or a more complex
model

Language model P(W )
Probability of a sequence of words. Typically an n-gram
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Pronunciation dictionary

Words and their pronunciations provide the link between
sub-word HMMs and language models

Written by human experts

Typically based on phones

Constructing a dictionary involves
1 Selection of the words in the dictionary—want to ensure high

coverage of words in test data
2 Representation of the pronunciation(s) of each word

Explicit modelling of pronunciation variation
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Out-of-vocabulary (OOV) rate

OOV rate: percent of word tokens in test data that are not
contained in the ASR system dictionary

Training vocabulary requires pronunciations for all words in
training data (since training requires an HMM to be
constructed for each training utterance)

Select the recognition vocabulary to minimize the OOV rate
(by testing on development data)

Recognition vocabulary may be different to training vocabulary

Empirical result: each OOV word results in 1.5–2 extra errors
(>1 due to the loss of contextual information)
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Multilingual aspects

Many languages are morphologically richer than English: this
has a major effect of vocabulary construction and language
modelling

Compounding (eg German): decompose compound words into
constituent parts, and carry out pronunciation and language
modelling on the decomposed parts

Highly inflected languages (eg Arabic, Slavic languages):
specific components for modelling inflection (eg factored
language models)

Inflecting and compounding languages (eg Finnish)

All approaches aim to reduce ASR errors by reducing the
OOV rate through modelling at the morph level; also
addresses data sparsity
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Single and multiple pronunciations

Words may have multiple pronunciations:
1 Accent, dialect: tomato, zebra

global changes to dictionary based on consistent pronunciation
variations

2 Phonological phenomena: handbag/ h ae m b ae g

I can’t stay / [ah k ae n s t ay]
3 Part of speech: project, excuse

This seems to imply many pronunciations per word, including:
1 Global transform based on speaker characteristics
2 Context-dependent pronunciation models, encoding of

phonological phenomena

BUT state-of-the-art large vocabulary systems average about
1.1 pronunciations per word: most words have a single
pronunciation
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Consistency vs Fidelity

Empirical finding: adding pronunciation variants can result in
reduced accuracy

Adding pronunciations gives more “flexibility” to word models
and increases the number of potential ambiguities—more
possible state sequences to match the observed acoustics

Speech recognition uses a consistent rather than a faithful
representation of pronunciations

A consistent representation requires only that the same word
has the same phonemic representation (possibly with
alternates): the training data need only be transcribed at the
word level

A faithful phonemic representation requires a detailed
phonetic transcription of the training speech (much too
expensive for large training data sets)
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Current topics in pronunciation modelling

Automatic learning of pronunciation variations or alternative
pronunciations for some words – e.g. learning probability
distribution over possible pronunciations generated by
grapheme-to-phoneme models

Automatic learning of pronunciations of new words based on
an initial seed lexicon

Joint learning of the inventory of subword units and the
pronunciation lexicon

Sub-phonetic / articulatory feature model

Grapheme-based modelling: model at the character level and
remove the problem of pronunciation modelling entirely
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Statistical language models

Basic idea The language model is the prior probability of the
word sequence P(W )

Statistical language models: cover “ungrammatical”
utterances, computationally efficient, trainable from huge
amounts of data, can assign a probability to a sentence
fragment as well as a whole sentence

Until very recently n-grams were the state-of-the-art
language model for ASR

Unsophisticated, linguistically implausible
Short, finite context
Model solely at the shallow word level
But: wide coverage, able to deal with “ungrammatical”
strings, statistical and scaleable

In an n-gram, the probability of a word depends only on the
identity of that word and of the preceding n-1 words. These
short sequences of n words are called n-grams.

ASR Lecture 10 Lexicon and Language Model 12



Bigram language model

Word sequence W = w1,w2, . . .wM

P(W) = P(w1)P(w2 | w1)P(w3 | w1,w2)

. . .P(wM | w1,w2, . . .wM−1)

Bigram approximation—consider only one word of context:

P(W) ' P(w1)P(w2 | w1)P(w3 | w2) . . .P(wM | wM−1)

Parameters of a bigram are the conditional probabilities
P(wj | wi )

Maximum likelihood estimates by counting:

P(wj |wi ) ∼
c(wi ,wj)

c(wi )

where c(wi ,wj) is the number of observations of wi followed
by wj , and c(wi ) is the number of observations of wi

(irrespective of what follows)
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The zero probability problem

Maximum likelihood estimation is based on counts of words in
the training data

If a n-gram is not observed, it will have a count of 0—and the
maximum likelihood probability estimate will be 0

The zero probability problem: just because something does
not occur in the training data does not mean that it will not
occur

As n grows larger, so the data grow sparser, and the more
zero counts there will be

Solution: smooth the probability estimates so that unobserved
events do not have a zero probability

Since probabilities sum to 1, this means that some probability
is redistributed from observed to unobserved n-grams
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Smoothing language models

What is the probability of an unseen n-gram?

Add-one smoothing: add one to all counts and renormalize.

“Discounts” non-zero counts and redistributes to zero counts
Since most n-grams are unseen (for large n more types than
tokens!) this gives too much probability to unseen n-grams
(discussed in Manning and Schütze)

Absolute discounting: subtract a constant from the observed
(non-zero count) n-grams, and redistribute this subtracted
probability over the unseen n-grams (zero counts)

Kneser-Ney smoothing: family of smoothing methods based
on absolute discounting that are at the state of the art
(Goodman, 2001)
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Backing off

How is the probability distributed over unseen events?

Basic idea: estimate the probability of an unseen n-gram using
the (n-1)-gram estimate

Use successively less context: trigram → bigram → unigram

Back-off models redistribute the probability “freed” by
discounting the n-gram counts

For a bigram

P(wj | wi ) =
c(wi ,wj)− D

c(wi )
if c(wi ,wj) > c

= P(wj)bwi otherwise

c is the count threshold, and D is the discount. bwi is the
backoff weight required for normalization
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Interpolation

Basic idea: Mix the probability estimates from all the
estimators: estimate the trigram probability by mixing
together trigram, bigram, unigram estimates
Simple interpolation

P̂(wn | wn−2,wn−1) =

λ3P(wn | wn−2,wn−1) + λ2P(wn | wn−1) + λ1P(wn)

With
∑

i λi = 1
Interpolation with coefficients conditioned on the context

P̂(wn | wn−2,wn−1) =

λ3(wn−2,wn−1)P(wn | wn−2,wn−1)+

λ2(wn−2,wn−1)P(wn | wn−1) + λ1(wn−2,wn−1)P(wn)

Set λ values to maximise the likelihood of the interpolated
language model generating a held-out corpus (possible to use
EM to do this)
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Perplexity

Measure the quality of a language model by how well it
predicts a test set W (i.e. estimated probability of word
sequence)

Perplexity (PP(W )) – inverse probability of the test set W ,
normalized by the number of words N

PP(W ) = P(W )
−1
N = P(w1w2 . . .wN)

−1
N

Perplexity of a bigram LM

PP(W ) = (P(w1)P(w2|w1)P(w3|w2) . . .P(wN |wN−1))
−1
N

Example perplexities for different n-gram LMs trained on Wall
St Journal (38M words)

Unigram – 962
Bigram – 170
Trigram – 109
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Distributed representation for language modelling

Each word is associated with a learned distributed
representation (feature vector)

Use a neural network to estimate the conditional probability of
the next word given the the distributed representations of the
context words

Learn the distributed representations and the weights of the
conditional probability estimate jointly by maximising the log
likelihood of the training data

Similar words (distributionally) will have similar feature vectors
— small change in feature vector will result in small change in
probability estimate (since the NN is a smooth function)
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Neural Probabilistic Language Model

Bengio et al (2006)
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Neural Probabilistic Language Model

Train using stochastic gradient ascent to maximise log
likelihood

Number of free parameters (weights) scales

Linearly with vocabulary size
Linearly with context size

Can be (linearly) interpolated with n-gram model

Perplexity results on AP News (14M words training).
|V | = 18k

model n perplexity
NPLM(100,60) 6 109
n-gram (KN) 3 127
n-gram (KN) 4 119
n-gram (KN) 5 117
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Shortlists

Reduce computation by only including the s most frequent
words at the output — the shortlist (S) (full vocabulary still
used for context)

Use an n-gram model to estimate probabilities of words not in
the shortlist

Neural network thus redistributes probability for the words in
the shortlist

PS(ht) =
∑
w∈S

P(w |ht)

P(wt |ht) =

{
PNN(wt |ht)PS(ht) ifwt ∈ S
PKN(wt |ht) else

In a |V | = 50k task a 1024 word shortlist covers 89% of
4-grams, 4096 words covers 97%
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NPLM — ASR results

Speech recognition results on Switchboard

7M / 12M / 27M words in domain data.

500M words background data (broadcast news)

Vocab size |V | = 51k , Shortlist size |S | = 12k

WER/%
in-domain words 7M 12M 27M

KN (in-domain) 25.3 23.0 20.0
NN (in-domain) 24.5 22.2 19.1

KN (+b/g) 24.1 22.3 19.3
NN (+b/g) 23.7 21.8 18.9
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Summary

Pronunciation dictionaries

n-gram language models

Neural network language models
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Reading

Jurafsky and Martin, chapter 4

Y Bengio et al (2006), “Neural probabilistic language models”
(sections 6.1, 6.2, 6.3, 6.6, 6.7, 6.8), Studies in Fuzziness and
Soft Computing Volume 194, Springer, chapter 6. http://

link.springer.com/chapter/10.1007/3-540-33486-6_6
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