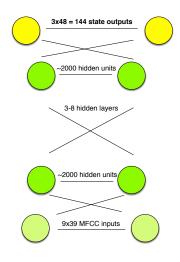
Neural Networks for Acoustic Modelling part 2

Steve Renals

Automatic Speech Recognition – ASR Lecture 9 12 February 2018

DNN Acoustic Models

Deep neural network for TIMIT



- Deeper: Deep neural network architecture – multiple hidden layers
- Wider: Use HMM state alignment as outputs rather than hand-labelled phones – 3-state HMMs, so 3×48 states
- Can use pretraining to improve training accuracy of models with many hidden layers
- Training many hidden layers is computationally expensive – use GPUs to provide the computational power

Pretraining

 Training multi-hidden layers directly with gradient descent is difficult — sensitive to initialisation, gradients can be very small after propagating back through several layers.

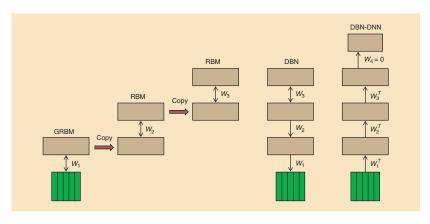
Unsupervised pretraining

- Train a stacked restricted Boltzmann machine generative model (unsupervised, contrastive divergence training), then finetune with backprop
- Train a stacked autoencoder, then finetune with backprop

Layer-by-layer training

 Successively train deeper networks, each time replacing output layer with hidden layer and new output layer

Unsupervised pretraining



Hinton et al (2012)

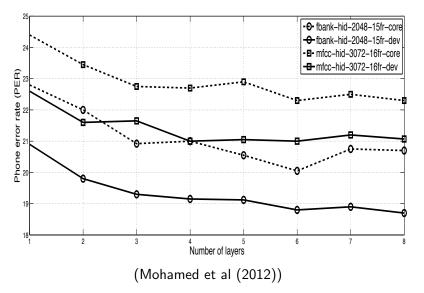
Hybrid HMM/DNN phone recognition (TIMIT)

- Train a 'baseline' three state monophone HMM/GMM system (61 phones, 3 state HMMs) and Viterbi align to provide DNN training targets (time state alignment)
- The HMM/DNN system uses the same set of states as the HMM/GMM system — DNN has 183 (61*3) outputs
- Hidden layers many experiments, exact sizes not highly critical
 - 3–8 hidden layers
 - 1024–3072 units per hidden layer
- Multiple hidden layers always work better than one hidden layer
- Pretraining always results in lower error rates
- Best systems have lower phone error rate than best HMM/GMM systems (using state-of-the-art techniques such as discriminative training, speaker adaptive training)

Acoustic features for NN acoustic models

- GMMs: filter bank features (spectral domain) not used as they are strongly correlated with each other – would either require
 - full covariance matrix Gaussians
 - many diagonal covariance Gaussians
- DNNs do not require the components of the feature vector to be uncorrelated
 - Can directly use multiple frames of input context (this has been done in NN/HMM systems since 1990, and is crucial to make them work)
 - Can potentially use feature vectors with correlated components (e.g. filter banks)
- Experiments indicate that filter bank features result in greater accuracy than MFCCs

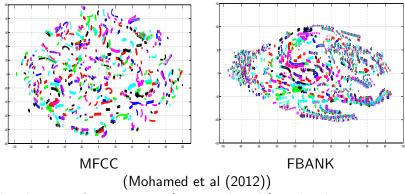
TIMIT phone error rates: effect of depth and feature type



Visualising neural networks

- How to visualise NN layers? "t-SNE" (stochastic neighbour embedding using t-distribution) projects high dimension vectors (e.g. the values of all the units in a layer) into 2 dimensions
- t-SNE projection aims to keep points that are close in high dimensions close in 2 dimensions by comparing distributions over pairwise distances between the high dimensional and 2 dimensional spaces – the optimisation is over the positions of points in the 2-d space

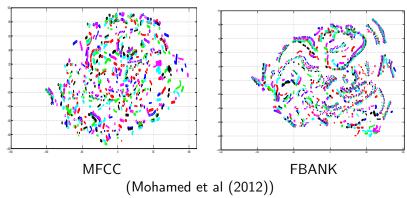
Feature vector (input layer): t-SNE visualisation



Visualisation of 2 utterances (cross and circle) spoken by 6 speakers (colours)

MFCCs are more scattered than FBANK FBANK has more local structure than MFCCs

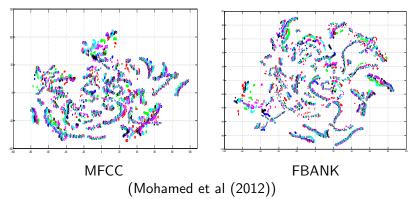
First hidden layer: t-SNE visualisation



Visualisation of 2 utterances (cross and circle) spoken by 6 speakers (colours)

Hidden layer vectors start to align more between speakers for FBANK

Eighth hidden layer: t-SNE visualisation



Visualisation of 2 utterances (cross and circle) spoken by 6 speakers (colours)

In the final hidden layer, the hidden layer outputs for the same phone are well-aligned across speakers for both MFCC and FBANK – but stronger for FBANK

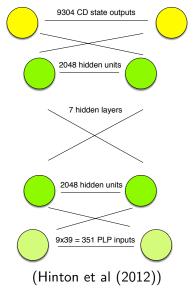
Visualising neural networks

- How to visualise NN layers? "t-SNE" (stochastic neighbour embedding using t-distribution) projects high dimension vectors (e.g. the values of all the units in a layer) into 2 dimensions
- t-SNE projection aims to keep points that are close in high dimensions close in 2 dimensions by comparing distributions over pairwise distances between the high dimensional and 2 dimensional spaces – the optimisation is over the positions of points in the 2-d space

Are the differences due to FBANK being higher dimension (41 \times 3 = 123) than MFCC (13 \times 3 = 39)?

- No Using higher dimension MFCCs, or just adding noisy dimmensions to MFCCs results in higher error rate
- Why? In FBANK the useful information is distributed over all the features; in MFCC it is concentrated in the first few.

DNN acoustic model for Switchboard



14

Example: hybrid HMM/DNN large vocabulary conversational speech recognition (Switchboard)

- Recognition of American English conversational telephone speech (Switchboard)
- Baseline context-dependent HMM/GMM system
 - 9,304 tied states
 - Discriminatively trained (BMMI similar to MPE)
 - 39-dimension PLP (+ derivatives) features
 - Trained on 309 hours of speech
- Hybrid HMM/DNN system
 - Context-dependent 9304 output units obtained from Viterbi alignment of HMM/GMM system
 - 7 hidden layers, 2048 units per layer
- DNN-based system results in significant word error rate reduction compared with GMM-based system
- Pretraining not necessary on larger tasks (empirical result)

DNN vs GMM on large vocabulary tasks (Experiments from 2012)

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERS USING DNN-HMMS AND GMM-HMMS ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

TASK	HOURS OF TRAINING DATA	DNN-HMM	GMM-HMM WITH SAME DATA	GMM-HMM WITH MORE DATA
SWITCHBOARD (TEST SET 1)	309	18.5	27.4	18.6 (2,000 H)
SWITCHBOARD (TEST SET 2)	309	16.1	23.6	17.1 (2,000 H)
ENGLISH BROADCAST NEWS	50	17.5	18.8	
BING VOICE SEARCH (SENTENCE ERROR RATES)	24	30.4	36.2	
GOOGLE VOICE INPUT	5,870	12.3		16.0 (>> 5,870 H)
YOUTUBE	1,400	47.6	52.3	

(Hinton et al (2012))

Summary

- DNN/HMM systems (hybrid systems) give a significant improvement over GMM/HMM systems
- Compared with 1990s NN/HMM systems, DNN/HMM systems
 - model context-dependent tied states with a much wider output layer
 - are deeper more hidden layers
 - can use correlated features (e.g. FBANK)

Next lecture: Lexicon and language model

Reading

 G Hinton et al (Nov 2012). "Deep neural networks for acoustic modeling in speech recognition", IEEE Signal Processing Magazine, 29(6), 82–97.

http://ieeexplore.ieee.org/document/6296526

 A Mohamed et al (2012). "Unserstanding how deep belief networks perform acoustic modelling", Proc ICASSP-2012. http:

```
//www.cs.toronto.edu/~asamir/papers/icassp12_dbn.pdf
```