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Recap: Training NNs using back-propagation of error
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Neural networks for phone classification
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Neural networks for phone classification

@ Phone recognition task — e.g. TIMIT corpus

o 630 speakers (462 train, 168 test) each reading 10 sentences
(usually use 8 sentences per speaker, since 2 sentences are the
same for all speakers)

e Speech is labelled by hand at the phone level (time-aligned)

e 61-phone set, usually reduced to 48/39 phones

@ Phone recognition tasks

e Frame classification — classify each frame of data

e Phone classification — classify each segment of data
(segmentation into unlabelled phones is given)

e Phone recognition — segment the data and label each segment
(the usual speech recognition task)

@ Frame classification — straightforward with a neural network

e train using labelled frames

e test a frame at a time, assigning the label to the output with
the highest score
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Neural networks for phone recognition

@ Train a neural network to associate a phone label with a
frame of acoustic data (4 context)

e Can interpret the output of the network as P(phone |
acoustic-frame)

@ Hybrid NN/HMM systems: in an HMM, replace the GMMs
used to estimate output pdfs with the outputs of neural
networks

@ One-state per phone HMM system:

e Train an NN as a phone classifier (= phone probability
estimator)

e Use NN to obtain output probabilities in Viterbi algorithm to
find most probable sequence of phones (words)
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Neural networks and posterior probabilities

Posterior probability estimation
@ Consider a neural network trained as a classifier — each output
corresponds to a class.

@ When applying a trained network to test data, it can be
shown that the value of output corresponding to class g given
an input x, is an estimate of the posterior probability P(q|x)

e Using Bayes Rule we can relate the posterior P(q|x) to the
likelihood p(x|q) used as an output probability in an HMM:

p(x|q)P(q)

Plal) = =255

(this is assuming 1 state per phone q)
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Scaled likelihoods

o If we would like to use NN outputs as output probabilities in
an HMM, then we would like probabilities (or densities) of the
form p(x|q) — likelihoods.

We can write scaled likelihoods as:
P(alx) _ p(x|q)

p(q) p(x)

@ Scaled likelihoods can be obtained by “dividing by the priors”
— divide each network output P(g|x) by P(gq), the relative
frequency of class g in the training data

e Using p(x|q)/p(x) rather than p(x|q) is OK since p(x) does
not depend on the class g

@ We can use the scaled likelihoods obtained from a neural

network in place of the usual likelihoods obtained from a
GMM
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Hybrid NN/HMM

o If we have a K-state HMM system, then we train a K-output
NN to estimate the scaled likelihoods used in a hybrid system

@ For TIMIT, using a 1 state per phone systems, we obtain
scaled likelihoods from a NN trained to classify phones
@ For continuous speech recognition we can use:
o 1 state per phone models
o 3 state Cl models (so we would have an NN with 39 x 3 =117

outputs)
o State-clustered models, with one NN output per tied state
(this can lead to networks with many outputs!)

@ Scaled likelihood and dividing by the priors

e One can interpret computing the scaled likelihoods as factoring
out the prior estimates for each phone based on the acoustic
training data. The HMM can then integrate better prior
estimates based on the language model and lexicon
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Hybrid NN/HMM
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Monophone HMM /NN hybrid system (1993)
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Renals, Morgan, Cohen & Franco, ICASSP 1992
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Monophone HMM /NN hybrid system (1998)
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@ Broadcast news transcription (1998) — 20.8% WER
o (best GMM-based system, 13.5%)
e Cook et al, DARPA, 1999
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Tandem features (posteriorgrams)

@ Use NN probability estimates as an additional input feature
stream in an HMM/GMM system —- ( Tandem features (i.e.
NN + acoustics), posteriorgrams)

@ Advantages of tandem features

e can be estimated using a large amount of temporal context (eg
up to £25 frames)

e encode phone discrimination information

o only weakly correlated with PLP or MFCC features

@ Tandem features: reduce dimensionality of NN outputs using
PCA, then concatenate with acoustic features (e.g. MFCCs)

o PCA also decorrelates feature vector components — important
for GMM-based systems
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Tandem features
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Bottleneck features
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@ Use a "bottleneck” hidden layer to provide features for a
HMM/GMM system

@ Decorrelate the hidden layer using PCA (or similar)
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Experimental comparison of tandem and bottleneck

features
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(Valente et al (2011))
Results on a Madarin broadcast news transcription task, using
an HMM/GMM system
Explores many different acoustic features for the NN
Posteriorgram /bottleneck features alone (top)
Concatenating NN features with MFCCs (bottom)
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HMM /NN vs HMM/GMM

@ Advantages of NN:
o Can easily model correlated features
o Correlated feature vector components (eg spectral features)
@ Input context — multiple frames of data at input
e More flexible than GMMs — not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
o NNs can model multiple events in the input simultaneously —
different sets of hidden units modelling each event; GMMs
assume each frame generated by a single mixture component.
o NNs can learn richer representations and learn ‘higher-level’
features (tandem, posteriorgrams, bottleneck features)
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HMM /NN vs HMM/GMM

@ Advantages of NN:
o Can easily model correlated features
o Correlated feature vector components (eg spectral features)
@ Input context — multiple frames of data at input
e More flexible than GMMs — not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
o NNs can model multiple events in the input simultaneously —
different sets of hidden units modelling each event; GMMs
assume each frame generated by a single mixture component.
o NNs can learn richer representations and learn ‘higher-level’
features (tandem, posteriorgrams, bottleneck features)
@ Disadvantages of NN:
e Until ~ 2012:
o Context-independent (monophone) models, weak speaker
adaptation algorithms
@ NN systems less complex than GMMs (fewer parameters):
RNN — < 100k parameters, MLP — ~ 1M parameters
e Computationally expensive - more difficult to parallelise
training than GMM systems
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@ Hybrid neural network / HMM systems — using NN acoustic
models to compute the output probabilities for HMMs
o NNs trained as a phone classifier estimate posterior
probabilities P(phone | acoustic-frame)
e Scaled likelihoods — divide by the phone priors to obtained
(scaled) likelihoods to use as HMM output probabilities
@ Neural network features — append features obtained from a
trained NN to acoustic features (e.g. MFCCs)
e Tandem / posteriorgram: use the (transformed) output of an
NN trained as a phone classifier as additional features for a
GMM system
o Bottleneck features: use a the (transformed) hidden layer
output of an NN trained as a phone classifier as additional
features for a GMM system

Next lecture: Deep neural network acoustic models
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