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Recap: Training NNs using back-propagation of error
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Neural networks for phone classification

1 hidden layer

~1000 hidden units

~48 phone classes

9x39 MFCC inputs

x(t-4) x(t-3) x(t) x(t+3) x(t+4)… …

P(phone | x)
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Neural networks for phone classification

Phone recognition task – e.g. TIMIT corpus

630 speakers (462 train, 168 test) each reading 10 sentences
(usually use 8 sentences per speaker, since 2 sentences are the
same for all speakers)
Speech is labelled by hand at the phone level (time-aligned)
61-phone set, usually reduced to 48/39 phones

Phone recognition tasks

Frame classification – classify each frame of data
Phone classification – classify each segment of data
(segmentation into unlabelled phones is given)
Phone recognition – segment the data and label each segment
(the usual speech recognition task)

Frame classification – straightforward with a neural network

train using labelled frames
test a frame at a time, assigning the label to the output with
the highest score
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Neural networks for phone recognition

Train a neural network to associate a phone label with a
frame of acoustic data (+ context)

Can interpret the output of the network as P(phone |
acoustic-frame)

Hybrid NN/HMM systems: in an HMM, replace the GMMs
used to estimate output pdfs with the outputs of neural
networks

One-state per phone HMM system:

Train an NN as a phone classifier (= phone probability
estimator)
Use NN to obtain output probabilities in Viterbi algorithm to
find most probable sequence of phones (words)
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Neural networks and posterior probabilities

Posterior probability estimation

Consider a neural network trained as a classifier – each output
corresponds to a class.

When applying a trained network to test data, it can be
shown that the value of output corresponding to class q given
an input x, is an estimate of the posterior probability P(q|x)

Using Bayes Rule we can relate the posterior P(q|x) to the
likelihood p(x|q) used as an output probability in an HMM:

P(q|x) =
p(x|q)P(q)

p(x)

(this is assuming 1 state per phone q)
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Scaled likelihoods

If we would like to use NN outputs as output probabilities in
an HMM, then we would like probabilities (or densities) of the
form p(x|q) – likelihoods.
We can write scaled likelihoods as:

P(q|x)

p(q)
=

p(x|q)

p(x)

Scaled likelihoods can be obtained by “dividing by the priors”
– divide each network output P(q|x) by P(q), the relative
frequency of class q in the training data

Using p(x|q)/p(x) rather than p(x|q) is OK since p(x) does
not depend on the class q

We can use the scaled likelihoods obtained from a neural
network in place of the usual likelihoods obtained from a
GMM
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Hybrid NN/HMM

If we have a K -state HMM system, then we train a K -output
NN to estimate the scaled likelihoods used in a hybrid system

For TIMIT, using a 1 state per phone systems, we obtain
scaled likelihoods from a NN trained to classify phones

For continuous speech recognition we can use:

1 state per phone models
3 state CI models (so we would have an NN with 39× 3 = 117
outputs)
State-clustered models, with one NN output per tied state
(this can lead to networks with many outputs!)

Scaled likelihood and dividing by the priors

One can interpret computing the scaled likelihoods as factoring
out the prior estimates for each phone based on the acoustic
training data. The HMM can then integrate better prior
estimates based on the language model and lexicon
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Hybrid NN/HMM
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Monophone HMM/NN hybrid system (1993)

Million Parameters

Error (%)

0 1 2 3 4 5 6
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0 CI-HMM

CI-MLP

CD-HMM

MIX

Renals, Morgan, Cohen & Franco, ICASSP 1992

ASR Lecture 8 Neural Networks for Acoustic Modelling part 1 10



Monophone HMM/NN hybrid system (1998)
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Tandem features (posteriorgrams)

Use NN probability estimates as an additional input feature
stream in an HMM/GMM system —- (Tandem features (i.e.
NN + acoustics), posteriorgrams)

Advantages of tandem features

can be estimated using a large amount of temporal context (eg
up to ±25 frames)
encode phone discrimination information
only weakly correlated with PLP or MFCC features

Tandem features: reduce dimensionality of NN outputs using
PCA, then concatenate with acoustic features (e.g. MFCCs)

PCA also decorrelates feature vector components – important
for GMM-based systems
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Tandem features

IEEE SIGNAL PROCESSING MAGAZINE [82] SEPTEMBER 2005

recognition systems (SRSs), particularly in the context of the
conversational telephone speech recognition task. This ultimate-
ly would require both a revamping of acoustical feature extrac-
tion and a fresh look at the incorporation of these features into
statistical models representing speech. So far, much of our effort
has gone towards the design of new features and experimentation
with their incorporation in a modern speech-to-text system. The
new features have already provided significant improvements in
such a system in the 2004 NIST evaluation of recognizers of con-
versational telephone speech. The development of statistical
models to best incorporate the long time features is being
explored, but development is still in its early stages. 

BACKGROUND 
Mainstream speech recognition systems typically use a signal
representation derived from a cepstral transformation of a
short-term spectral envelope. This dependence on the spectral
envelope for speech sound discrimination dates back to the
1950s, as described in [11]. In turn, this style of analysis can be
traced back to the 1930s vocoder experiments of Homer Dudley
[14]. Perhaps more fundamentally, many speech scientists have
observed the relationship between the spectral components of
speech sounds and their phonetic identity. They have further
characterized these sounds by their correspondence to the state
of the speech articulators and the resulting resonances (for-
mants). By this view, one should use pattern recognition tech-
niques to classify new instances of speech sounds based on
their proximity in some spectral (or cepstral) space to speech
sounds collected for training the system. Modern statistical
speech recognition systems are fundamentally elaborations on

this principle; individual training examples are not used direct-
ly for calculating distances but rather are used to train models
that represent statistical distributions. The Markov chains that
are at the heart of these models represent the temporal aspect
of speech sounds and can accommodate differing durations for
particular instances. The overall structure provides a consistent
mathematical framework that can incorporate powerful learn-
ing methods such as maximum likelihood training using expec-
tation maximization [12]. Systems using short-term cepstra for
acoustic features and first-order Markov chains for the acoustic
modeling have been successful both in the laboratory and in
numerous applications, ranging from cell phone voice dialing
to dialog systems for use in call centers.

Despite these successes, there are still significant limita-
tions to speech recognition performance, particularly for con-
versational speech and/or for speech with significant acoustic
degradations from noise or reverberation. For this reason, we
have proposed methods that incorporate different (and larger)
analysis windows, which will be described below. We note in
passing that we and many others have already taken advantage
of processing techniques that incorporate information over
long time ranges, for instance for normalization (by cepstral
mean subtraction [2] or relative spectral analysis (RASTA)
[18]). We also have proposed features that are based on speech
sound class posterior probabilities, which have good properties
for both classification and stream combination.

TEMPORAL REPRESENTATIONS FOR EARS 
Our goal is to replace (or augment) the current notion of a
spectral-energy-based vector at time t with variables based on

[FIG1] Posterior-based feature generation system. Each posterior stream is created by feeding a trained multilayer perceptron (MLP)
with features that have different temporal and spectral extent. The “PLP Net” is trained to generate phone posterior estimates given
roughly 100 ms of telephone bandwidth speech after being processed by PLP analysis over nine frames. HATs processing is trained for
the same goal given 500 ms of log-critical band energies. The two streams of posteriors are combined (in a weighted sum where each
weight is a scaled version of local stream entropy) and transformed as shown to augment the more traditional PLP features. The
augmented feature vector is used as an observation by the Gaussian mixture hidden Markov model (GMHMM) system.
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Bottleneck features
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ABSTRACT

This work continues in development of the recently proposed
Bottle-Neck features for ASR. A five-layers MLP used in bottle-
neck feature extraction allows to obtain arbitrary feature size without
dimensionality reduction by transforms, independently on the MLP
training targets. The MLP topology – number and sizes of layers,
suitable training targets, the impact of output feature transforms, the
need of delta features, and the dimensionality of the final feature vec-
tor are studied with respect to the best ASR result. Optimized fea-
tures are employed in three LVCSR tasks: Arabic broadcast news,
English conversational telephone speech and English meetings. Im-
provements over standard cepstral features and probabilistic MLP
features are shown for different tasks and different neural net in-
put representations. A significant improvement is observed when
phoneme MLP training targets are replaced by phoneme states and
when delta features are added.

Index Terms— Bottle-neck, MLP structure, features, LVCSR

1. INTRODUCTION

Features for ASR obtained from neural networks have recently be-
come a component of state-of-the-art recognition systems [1]. They
are typically obtained by projecting a larger time span of a critical-
band spectrogram onto posterior probabilities of phoneme classes
using multi-layer perceptron (MLP). That is why they are sometimes
referred to as probabilistic features. In order to better fit the sub-
sequent Gaussian mixture model, the MLP estimates of posteriors
are logarithmized and decorrelated by Principal Components Analy-
sis (PCA) or Heteroscedastic Linear Discriminant Analysis (HLDA),
which also allows to reduce their dimensionality.

The performance of probabilistic features is often below that of
standard cepstral features. However, due to their different nature,
they exhibit a large amount of complementary information. The role
of the probabilistic features in ASR is thus to augment the cepstral
features. This is especially the case of TRAP-based probabilistic
features [2], where the input to the MLP is formed by temporal tra-
jectories of energies in independent critical bands. Since their intro-
duction, several modifications targeting the input spectrogram [3, 4],
the MLP structure [5] and MLP training targets [6] were proposed.
Despite all the effort, probabilistic features have not consistently out-

This work was partly supported by European IST projects AMIDA (FP6-033812)
and Caretaker (FP6-027231), by Grant Agency of Czech Republic under project No.
102/08/0707, by Czech Ministry of Education under project No. MSM0021630528,
and by the DARPA GALE program, Contract No. HR0011-06-C-0022. The hardware
used in this work was partially provided by CESNET under projects No. 162/2005 and
No. 201/2006.
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Fig. 1. Block diagram of the Bottle-Neck feature extraction with
TRAP-DCT raw features at the MLP input.

performed cepstral features and are being used only as their comple-
ment.

This misfortune seems to have ended last year with the introduc-
tion of the Bottle-Neck (BN) features [7]. BN features use five-layers
MLP with a narrow layer in the middle (bottle-neck). The fundamen-
tal difference between probabilistic and BN features is that the latter
are not derived from the class posteriors. Instead, they are obtained
as linear outputs of the neurons in the bottle-neck layer. This struc-
ture makes the size of the features independent of the number of the
MLP training targets. Hence it is easy to replace the phoneme targets
by finer and more numerous sub-phoneme classes, while retaining a
small feature vector without a need of a dimensionality reduction.
The bottle-neck MLP training process is the same as for probabilis-
tic features and employs all five layers. During feature extraction
only the first three layers are involved. It is illustrated in Fig. 1.

This work continues in the development of the BN features by
experimenting with the topology of the MLP (number of layers and
their sizes) as described in section 3.1. Section 3.2 evaluates the
contribution of switching from phoneme to sub-phoneme training
targets. Section 3.3 questions the necessity of decorrelating the fea-
tures prior to GMM-HMM modeling by PCA or HLDA transforms.
Finally, section 3.4 experiments with augmenting BN features by
their temporal derivatives in the same way it is commonly done to
cepstral features.

2. EXPERIMENTAL SETUP

Experiments were carried out on three LVCSR tasks using two in-
dependent MLP implementations, three independent HMM imple-
mentations and three different MLP raw input features in order to
provide a better objectivity in conclusions.

2.1. Raw Features for MLP

The purpose of the neural network in the BN system is to transform
a certain representation of speech into output features. The speech

Grezl and Fousek (2008)

Use a “bottleneck” hidden layer to provide features for a
HMM/GMM system

Decorrelate the hidden layer using PCA (or similar)
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Experimental comparison of tandem and bottleneck
features
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Figure 2: (Top plot) Stand-alone feature performance of various speech signal representations (noted on the X-axis) when used as input to three-layer
MLP, bottleneck, hierarchical and multi-stream architectures. The down plot reports the feature performances when used in concatenation with MFCC.

three-layer perceptron. The performances of the various MLP
front-ends are summarized in Figures 2 as stand-alone features
(top plot) and in concatenation with MFCC (down plot).

Figure 2 (top plot) reveals that, when a three-layer MLP
is used, none of the long temporal inputs (MRASTA, DCT-
TRAPS, wLP-TRAPS, and their augmented versions) outper-
form the conventional TANDEM-PLP nor the MFCC base-
line. On the other hand, replacing the three-layer MLP with a
bottleneck or hierarchical architecture (while keeping constant
the total number of parameters) considerably reduces the error,
achieving a CER lower than the MFCC baseline. The lowest
CER is obtained by the multi-stream architecture which com-
bines outputs of MLPs trained on long and short temporal con-
texts improving by 10% relative over the MFCC baseline.

Figures 2 (down plot) reports CER obtained in concate-
nation with MFCC and reveals that, even when their perfor-
mances are poor as stand-alone front-end, three-layer MLP
features based on long temporal spans always appear to pro-
vide complementary information to the MFCC with improve-
ments in the range of 10-14% relative. When the three-
layer MLP is replaced with bottleneck or hierarchical archi-
tectures, the improvements are increased to the range of 16-
18%. The various methods for encoding the information (DCT-
TRAPS, MRASTA, wLP-TRAPS) perform equally well when
augmented with pitch and energy. It is interesting to notice that,
in concatenation with MFCC, the lowest CER is obtained by
the bottleneck/hierarchical architectures rather then the multi-
stream features (see previous section for explanation).

Table 5 summarizes the improvements that modifications
to the three-layer MLP can produce with respect to the original
TANDEM-PLP features. As stand-alone front-end, the lowest
CER is produced by multi-stream features (+10% relative over
the MFCC baseline, compared to +1% obtained by TANDEM-
PLP); in concatenation with MFCC, the lowest CER is pro-
duced by bottleneck/hierarchical architectures (+18% relative,
compared to +14% obtained by TANDEM-PLP, over the MFCC
baseline)2.

2This work was supported by the the Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR0011-06-C-0023 and
by the Swiss National Science Fundation through IM2 grant. Authors
would like to thanks colleagues involved in the GALE project at IDIAP,

Table 5: Summary Table of CER and improvements.
TANDEM Multistream

MLP 25.5 (+1%) 23.1 (+10%)
TANDEM Hier/Bottleneck

MLP+MFCC 22.2 (+14%) 21.2 (+18%)
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(Valente et al (2011))

Results on a Madarin broadcast news transcription task, using
an HMM/GMM system

Explores many different acoustic features for the NN

Posteriorgram/bottleneck features alone (top)

Concatenating NN features with MFCCs (bottom)
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HMM/NN vs HMM/GMM

Advantages of NN:
Can easily model correlated features

Correlated feature vector components (eg spectral features)
Input context – multiple frames of data at input

More flexible than GMMs – not made of (nearly) local
components); GMMs inefficient for non-linear class boundaries
NNs can model multiple events in the input simultaneously –
different sets of hidden units modelling each event; GMMs
assume each frame generated by a single mixture component.
NNs can learn richer representations and learn ‘higher-level’
features (tandem, posteriorgrams, bottleneck features)

Disadvantages of NN:
Until ∼ 2012:

Context-independent (monophone) models, weak speaker
adaptation algorithms
NN systems less complex than GMMs (fewer parameters):
RNN – < 100k parameters, MLP – ∼ 1M parameters

Computationally expensive - more difficult to parallelise
training than GMM systems
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Summary

Hybrid neural network / HMM systems – using NN acoustic
models to compute the output probabilities for HMMs

NNs trained as a phone classifier estimate posterior
probabilities P(phone | acoustic-frame)
Scaled likelihoods – divide by the phone priors to obtained
(scaled) likelihoods to use as HMM output probabilities

Neural network features – append features obtained from a
trained NN to acoustic features (e.g. MFCCs)

Tandem / posteriorgram: use the (transformed) output of an
NN trained as a phone classifier as additional features for a
GMM system
Bottleneck features: use a the (transformed) hidden layer
output of an NN trained as a phone classifier as additional
features for a GMM system

Next lecture: Deep neural network acoustic models
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