
Introduction to Neural Networks

Steve Renals

Automatic Speech Recognition – ASR Lecture 7
5 February 2018

ASR Lecture 7 Introduction to Neural Networks 1

Local Phonetic Scores and Sequence Modelling

DTW - local distances (Euclidean)

HMM - emission probabilities (Gaussian or GMM)

x
1

S0

2

3

1

4

S

S

S

S

aa

a

a

a

a

01

12

23
22

33 34

a11

764321 time5

x x
3

x
4

x
5

x
6

x
72

observations

states

Compute the phonetic score(acoustic-frame, phone-model) –
this does the detailed matching at the frame-level

Chain phonetic scores together in a sequence - DTW, HMM

ASR Lecture 7 Introduction to Neural Networks 2

Phonetic scores

Task: given an input acoustic frame, output a score for each phone

X(t)

/aa/ .01

/ae/ .03

/ax/ .01

/ao/ .04

/b/ .09

/ch/ .67

/d/ .06

…

/zh/ .15

Acoustic frame
(at time t)

Phonetic Scores
(at time t)

f(t)

ASR Lecture 7 Introduction to Neural Networks 3

Phonetic scores

Compute the phonetic scores using a single layer neural network
(linear regression!)

/aa/ .01

/ae/ .03

/ax/ .01

/ao/ .04

/b/ .09

/ch/ .67

/d/ .06

…

/zh/ .15

/aa/ .01

/ae/ .03

/ax/ .01

/ao/ .04

/b/ .09

/ch/ .67

/d/ .06

…

/zh/ .15

Acoustic frame
(at time t)

X(t)

Phonetic Scores
(at time t)

f(t)

/aa/ .01

/ae/ .03

/ax/ .01

/ao/ .04

/b/ .09

/ch/ .67

/d/ .06

…

/zh/ .15

0.33

-0.23

0.71

0.47

0.11

-0.32

-0.02

…

0.22

w7(/aa/)

w1(/aa/)

w2(/aa/)

w3(/aa/)

w4(/aa/)

w5(/aa/)

w6(/aa/)

wd(/aa/)

Each output computes its score
as a weighted sum of the current inputs

…

ASR Lecture 7 Introduction to Neural Networks 4

Phonetic scores

Compute the phonetic scores using a single layer neural network

Write the estimated phonetic scores as a vector
f = (f1, f2, . . . , fQ)

Then if the acoustic frame at time t is X = (x1, x2, . . . , xd):

fj = wj1x1 + wj2x2 + . . .+ wjdxd + bj

or, write it using summation notation:

fj =
d∑

i=1

wjixi + bj

or, write it as vectors:

f = Wx + b

where we call W the weight matrix, and b the bias vector.

Check your understanding:
What are the dimensions of W and b?

ASR Lecture 7 Introduction to Neural Networks 5

Error function

f(t) = Wx(t) + b

observed

trained

estimated

How do we learn the parameters W and b?

Minimise an Error Function: Define a function which is 0
when the output f(n) equals the target output r(n) for all n
Target output: for TIMIT the target output corresponds to
the phone label for each frame
Mean square error: define the error function E as the mean
square difference between output and the target:

E =
1

2
· 1

N

N∑

n=1

||f(n)− r(n)||2

where there are N frames of training data in total
ASR Lecture 7 Introduction to Neural Networks 6

Notes on the error function

f is a function of the acoustic data x and the weights and
biases of the network (W and b)

This means that as well as depending on the training data (x
and r), E is also a function of the weights and biases, since it
is a function of f

We want to minimise the error function given a fixed training
set: we must set W and b to minimise E

Weight space: given the training set we can imagine a space
where every possible value of W and b results in a specific
value of E . We want to find the minimum of E in this weight
space.

Gradient descent: find the minimum iteratively – given a
current point in weight space find the direction of steepest
descent, and change W and b to move in that direction

ASR Lecture 7 Introduction to Neural Networks 7

Gradient Descent

Iterative update – after seeing some training data, we adjust
the weights and biases to reduce the error. Repeat until
convergence.

To update a parameter so as to reduce the error, we move
downhill in the direction of steepest descent. Thus to train a
network we must compute the gradient of the error with
respect to the weights and biases:




∂E
∂w10

· ∂E
∂w1i

· ∂E
∂w1d

. . .
∂E
∂wj0

· ∂E
∂wji

· ∂E
∂wjd

. . .
∂E

∂wQ0
· ∂E

∂wQi
· ∂E

∂wQd




(
∂E
∂b1

· ∂E
∂bj

· ∂E
∂bQ

)

ASR Lecture 7 Introduction to Neural Networks 8

Gradient Descent Procedure

1 Initialise weights and biases with small random numbers
2 For each batch of training data

1 Initialise total gradients: ∆wki = 0, ∆bk = 0
2 For each training example n in the batch:

Compute the error E n

For all k, i : Compute the gradients ∂E n/∂wki , ∂E
n/∂bk

Update the total gradients by accumulating the gradients for
example n

∆wki ← ∆wki +
∂E n

∂wki
∀k, i

∆bk ← ∆bk +
∂E n

∂bk
∀k

3 Update weights:

wki ← wki − η∆wki ∀k , i
bk ← bk − η∆bk ∀k

Terminate either after a fixed number of epochs, or when the error
stops decreasing by more than a threshold.

ASR Lecture 7 Introduction to Neural Networks 9

Gradient in SLN

How do we compute the gradients ∂En

∂wki
and ∂En

∂bk
?

En =
1

2

K∑

k=1

(f nk − rnk)2 =
1

2

K∑

k=1

(
d∑

i=1

(wkix
n
i + bk)− rnk

)2

∂En

∂wki
= (f nk − rnk)xni = gn

k x
n
i gn

k = f nk − rnk

Update rule: Update a weight wki using the gradient of the error
with respect to that weight: the product of the difference between
the actual and target outputs for an example (f nk − rnk) and the
value of the unit at the input to the weight (xi).

Check your understanding: Show that the gradient for the bias is

∂En

∂bk
= gn

k

ASR Lecture 7 Introduction to Neural Networks 10

Applying gradient descent to a single-layer network

x1 x2 x3 x4 x5

f2 =
5X

i=1

w2ixi

w24

�w24 =
X

n

(fn
2 � rn

2)xn
4

ASR Lecture 7 Introduction to Neural Networks 11

Acoustic context

Use multiple frames of acoustic context

/aa/ .01

/ae/ .03

/ax/ .01

/ao/ .04

/b/ .09

/ch/ .67

/d/ .06

…

/zh/ .15

/aa/ .11

/ae/ .09

/ax/ .04

/ao/ .04

/b/ .01

…

/i/ .65

…

/zh/ .01

Acoustic input
X(t) with +/-3

frames of context

Phonetic Scores
(at time t)

f(t)

/aa/ .01
X(t-3)

X(t-2)

X(t-1)

X(t)

X(t+1)

X(t+2)

X(t+3)

ASR Lecture 7 Introduction to Neural Networks 12

Hidden units

Single layer networks have limited computational power –
each output unit is trained to match a spectrogram directly (a
kind of discriminative template matching)

But there is a lot of variation in speech (as previously
discussed) – rate, coarticulation, speaker characteristics,
acoustic environment

Introduce an intermediate feature representation – “hidden
units” – more robust than template matching

Intermediate features represented by hidden units

ASR Lecture 7 Introduction to Neural Networks 13

Hidden units extracting features

/aa/ .01

/ae/ .03

/ax/ .01

/ao/ .04

/b/ .09

/ch/ .67

/d/ .06

…

/zh/ .15

/aa/ .11

/ae/ .09

/ax/ .04

/ao/ .04

/b/ .01

…

/i/ .65

…

/zh/ .01

/aa/ .01
X(t-3)

X(t-2)

X(t-1)

X(t)

X(t+1)

X(t+2)

X(t+3)

.

.

.

.

.

.

ASR Lecture 7 Introduction to Neural Networks 14

Hidden Units

/aa/ .01

/ae/ .03

/ax/ .01

/ao/ .04

/b/ .09

/ch/ .67

/d/ .06

…

/zh/ .15

/aa/ .11

/ae/ .09

/ax/ .04

/ao/ .04

/b/ .01

…

/i/ .65

…

/zh/ .01

/aa/ .01
X(t-3)

X(t-2)

X(t-1)

X(t)

X(t+1)

X(t+2)

X(t+3)

.

.

.

.

.

.

+

+

g

g

hj = relu

(
d∑

i=1

wjixi + bj

)
fk = softmax




H∑

j=1

vkjhj + bk




ASR Lecture 7 Introduction to Neural Networks 15

Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative: relu′(x) =
d

dx
relu(x) =

{
0 if x ≤ 0

1 if x > 0

ASR Lecture 7 Introduction to Neural Networks 16

Softmax

yk =
exp(ak)

∑K
j=1 exp(aj)

ak =
H∑

j=1

vkjhj + bk

This form of activation has the following properties

Each output will be between 0 and 1
The denominator ensures that the K outputs will sum to 1

Using softmax we can interpret the network output ynk as an
estimate of P(k|xn)

ASR Lecture 7 Introduction to Neural Networks 17

Cross-entropy error function

Cross-entropy error function:

En = −
C∑

k=1

rnk ln ynk

Optimise the weights W to maximise the log probability – or
to minimise the negative log probability.

A neat thing about softmax: if we train with cross-entropy
error function, we get a simple form for the gradients of the
output weights:

∂En

∂vkj
= (yk − rk)︸ ︷︷ ︸

gk

hj

ASR Lecture 7 Introduction to Neural Networks 18

Training multilayered networks – output layer

soft
max

relu

Outputs soft
max

Hidden units

soft
max

xi

hj

f1 f` fK

v1j v`j

vKj

wji

ASR Lecture 7 Introduction to Neural Networks 19

Training multilayered networks – output layer

soft
max

relu

Outputs soft
max

Hidden units

soft
max

xi

hj

f1 f` fK

�K
�`�1

v1j v`j

vKj

wji

@E

@vkj
= �khj

ASR Lecture 7 Introduction to Neural Networks 19

Backprop

Hidden units make training the weights more complicated,
since the hidden units affect the error function indirectly via
all the outputs

The Credit assignment problem: what is the “error” of a
hidden unit? how important is input-hidden weight wji to
output unit k?

Solution: back-propagate the deltas through the network

gj for a hidden unit is the weighted sum of the deltas of the
connected output units. (Propagate the g values backwards
through the network)

Backprop provides way of estimating the error of each hidden
unit

ASR Lecture 7 Introduction to Neural Networks 20

Backprop

soft
max

relu

Outputs soft
max

Hidden units

soft
max

xi

hj

f1 f` fK

�K
�`�1

v1j v`j

vKj

gj =

 X

`

glv`j

!
relu0

j

@E

@wji
= gjxi

wji

@E

@vkj
= gkhj

ASR Lecture 7 Introduction to Neural Networks 21

Back-propagation of error

The back-propagation of error algorithm is summarised as
follows:

1 Apply an input vectors from the training set, x, to the network
and forward propagate to obtain the output vector f

2 Using the target vector r compute the error E n

3 Evaluate the error signals gk for each output unit
4 Evaluate the error signals gj for each hidden unit using

back-propagation of error
5 Evaluate the derivatives for each training pattern

Back-propagation can be extended to multiple hidden layers,
in each case computing the gs for the current layer as a
weighted sum of the gs of the next layer

ASR Lecture 7 Introduction to Neural Networks 22

Summary and Reading

Single-layer and multi-layer neural networks

Error functions, weight space and gradient descent training

Multilayer networks and back-propagation

Transfer functions – sigmoid and softmax

Acoustic context

M Nielsen, Neural Networks and Deep Learning,
http://neuralnetworksanddeeplearning.com (chapters
1, 2, and 3)

Next lecture: Neural network acoustic models

ASR Lecture 7 Introduction to Neural Networks 23

http://neuralnetworksanddeeplearning.com

