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Local Phonetic Scores and Sequence Modelling

@ DTW - local distances (Euclidean)
@ HMM - emission probabilities (Gaussian or GMM)

states
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X, X, X, X, X Xg X, observations

e Compute the phonetic score(acoustic-frame, phone-model) —
this does the detailed matching at the frame-level
@ Chain phonetic scores together in a sequence - DTW, HMM
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Phonetic scores

Task: given an input acoustic frame, output a score for each phone
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Phonetic scores

Compute the phonetic scores using a single layer neural network
(linear regression!)
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Phonetic scores

Compute the phonetic scores using a single layer neural network
@ Write the estimated phonetic scores as a vector
f=(f,f,...,fQ)
@ Then if the acoustic frame at time t is X = (x1,x2,...,Xq):
fi = wjix1 + wjaxe + ... + Wjgxg + b;
or, write it using summation notation:
d

fi=> wixi+ b
i=1

or, write it as vectors:
f=Wx-+b

where we call W the weight matrix, and b the bias vector.

o Check your understanding:
What are the dimensions of W and b?
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Error function

estimated observed

£(t) = Wx(t) + b

trained

How do we learn the parameters W and b?

@ Minimise an Error Function: Define a function which is 0
when the output f(n) equals the target output r(n) for all n
@ Target output: for TIMIT the target output corresponds to

the phone label for each frame
@ Mean square error: define the error function E as the mean

square difference between output and the target:
N
1 1
E= 5y 2 ) - (ol

where there are N frames of training data-in total
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Notes on the error function

o f is a function of the acoustic data x and the weights and
biases of the network (W and b)

@ This means that as well as depending on the training data (x
and r), E is also a function of the weights and biases, since it
is a function of f

@ We want to minimise the error function given a fixed training
set: we must set W and b to minimise E

@ Weight space: given the training set we can imagine a space
where every possible value of W and b results in a specific
value of E. We want to find the minimum of E in this weight
space.

o Gradient descent: find the minimum iteratively — given a
current point in weight space find the direction of steepest
descent, and change W and b to move in that direction
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Gradient Descent

@ lterative update — after seeing some training data, we adjust
the weights and biases to reduce the error. Repeat until
convergence.

@ To update a parameter so as to reduce the error, we move
downhill in the direction of steepest descent. Thus to train a
network we must compute the gradient of the error with
respect to the weights and biases:
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Gradient Descent Procedure

© Initialise weights and biases with small random numbers
@ For each batch of training data
@ Initialise total gradients: Awy; =0, Abr =0
@ For each training example n in the batch:
o Compute the error E”
e For all k,i: Compute the gradients OE" /0w, OE" /Dby
e Update the total gradients by accumulating the gradients for

example n
AWk,' < AWki + Vk, i
Owgi
OE"
Ab Ab, Vk
K < k + 9bx

@ Update weights:
Wy <— Wy — UAWki Vk,l
by < by — nAbk Vk

Terminate either after a fixed number of epochs, or when the error
stops decreasing by more than a threshold.
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Gradient in SLN

How do we compute the gradlents and aE"
1K LA 2
EHZEZ(fkn—fk EZ (Z(WkiX,!'+bk)—r£)
k=1 k=1 \i=1
OE"
G | = (50— X7 = gixt)  (eh=f—rf)

Update rule: Update a weight wy; using the gradient of the error

with respect to that weight: the product of the difference between

the actual and target outputs for an example (f — r/) and the

value of the unit at the input to the weight (x;).

Check your understanding: Show that the gradient for the bias is
oE"™
0by

gk
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Applying gradient descent to a single-layer network




Acoustic context

Use multiple frames of acoustic context

/aa/ A1
/ae/ .09

/ax/ .04
/ao/ .04
Acoustic input Phonetic Scores
X(t) with +/-3 (at time t) /b/ .01
frames of context f(t)
/il .65

/ /zh/ .01
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@ Single layer networks have limited computational power —
each output unit is trained to match a spectrogram directly (a
kind of discriminative template matching)

@ But there is a lot of variation in speech (as previously
discussed) — rate, coarticulation, speaker characteristics,
acoustic environment

@ Introduce an intermediate feature representation — “hidden
units” — more robust than template matching

@ Intermediate features represented by hidden units
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Hidden units extracting features
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Hidden Units

X(t-3)

X(t-2) ’ /aa/ A1
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i=1 Jj=1
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Rectified Linear Unit — ReLU
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relu(x) = max(0, x)

1 if x>0
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,__eelad)
T K
Zj:l exp(a;)
H
a = Z vijhj + b
j=1

@ This form of activation has the following properties

e Each output will be between 0 and 1
e The denominator ensures that the K outputs will sum to 1

@ Using softmax we can interpret the network output y; as an
estimate of P(k|x")
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Cross-entropy error function

o Cross-entropy error function:

C

n __ n n
E *_Zrk Iny,
k=1

Optimise the weights W to maximise the log probability — or
to minimise the negative log probability.

@ A neat thing about softmax: if we train with cross-entropy
error function, we get a simple form for the gradients of the
output weights:

OE"
aij (.yk rk) J
8k
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Training multilayered networks — output layer
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Training multilayered networks — output layer
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Backprop

Hidden units make training the weights more complicated,
since the hidden units affect the error function indirectly via
all the outputs

The Credit assignment problem: what is the “error” of a
hidden unit? how important is input-hidden weight wj; to
output unit k?

Solution: back-propagate the deltas through the network

g;j for a hidden unit is the weighted sum of the deltas of the
connected output units. (Propagate the g values backwards
through the network)

Backprop provides way of estimating the error of each hidden
unit
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Backprop

Xi
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Back-propagation of error

@ The back-propagation of error algorithm is summarised as
follows:

© Apply an input vectors from the training set, x, to the network
and forward propagate to obtain the output vector f

@ Using the target vector r compute the error E”

© Evaluate the error signals g for each output unit

@ Evaluate the error signals gj for each hidden unit using
back-propagation of error

@ Evaluate the derivatives for each training pattern

@ Back-propagation can be extended to multiple hidden layers,
in each case computing the gs for the current layer as a
weighted sum of the gs of the next layer
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Summary and Reading

Single-layer and multi-layer neural networks

Error functions, weight space and gradient descent training
Multilayer networks and back-propagation

Transfer functions — sigmoid and softmax

Acoustic context

M Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com (chapters
1, 2, and 3)

Next lecture: Neural network acoustic models
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