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Local Phonetic Scores and Sequence Modelling

DTW - local distances (Euclidean)

HMM - emission probabilities (Gaussian or GMM)
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Compute the phonetic score(acoustic-frame, phone-model) –
this does the detailed matching at the frame-level

Chain phonetic scores together in a sequence - DTW, HMM
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Phonetic scores

Task: given an input acoustic frame, output a score for each phone

X(t)

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

Acoustic frame
(at time t)

Phonetic Scores
(at time t)

f(t)
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Phonetic scores

Compute the phonetic scores using a single layer neural network
(linear regression!)

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

Acoustic frame
(at time t)

X(t)

Phonetic Scores
(at time t)

f(t)

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

0.33

-0.23

0.71

0.47

0.11

-0.32

-0.02

…

0.22

w7(/aa/)

w1(/aa/)

w2(/aa/)

w3(/aa/)

w4(/aa/)

w5(/aa/)

w6(/aa/)

wd(/aa/)

Each output computes its score
as a weighted sum of the current inputs

…
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Phonetic scores

Compute the phonetic scores using a single layer neural network

Write the estimated phonetic scores as a vector
f = (f1, f2, . . . , fQ)

Then if the acoustic frame at time t is X = (x1, x2, . . . , xd):

fj = wj1x1 + wj2x2 + . . .+ wjdxd + bj

or, write it using summation notation:

fj =
d∑

i=1

wjixi + bj

or, write it as vectors:

f = Wx + b

where we call W the weight matrix, and b the bias vector.

Check your understanding:
What are the dimensions of W and b?
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Error function

f(t) = Wx(t) + b

observed

trained

estimated

How do we learn the parameters W and b?

Minimise an Error Function: Define a function which is 0
when the output f(n) equals the target output r(n) for all n
Target output: for TIMIT the target output corresponds to
the phone label for each frame
Mean square error: define the error function E as the mean
square difference between output and the target:

E =
1

2
· 1

N

N∑

n=1

||f(n)− r(n)||2

where there are N frames of training data in total
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Notes on the error function

f is a function of the acoustic data x and the weights and
biases of the network (W and b)

This means that as well as depending on the training data (x
and r), E is also a function of the weights and biases, since it
is a function of f

We want to minimise the error function given a fixed training
set: we must set W and b to minimise E

Weight space: given the training set we can imagine a space
where every possible value of W and b results in a specific
value of E . We want to find the minimum of E in this weight
space.

Gradient descent: find the minimum iteratively – given a
current point in weight space find the direction of steepest
descent, and change W and b to move in that direction
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Gradient Descent

Iterative update – after seeing some training data, we adjust
the weights and biases to reduce the error. Repeat until
convergence.

To update a parameter so as to reduce the error, we move
downhill in the direction of steepest descent. Thus to train a
network we must compute the gradient of the error with
respect to the weights and biases:




∂E
∂w10

· ∂E
∂w1i

· ∂E
∂w1d

. . .
∂E
∂wj0

· ∂E
∂wji

· ∂E
∂wjd

. . .
∂E

∂wQ0
· ∂E

∂wQi
· ∂E

∂wQd




(
∂E
∂b1

· ∂E
∂bj

· ∂E
∂bQ

)
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Gradient Descent Procedure

1 Initialise weights and biases with small random numbers
2 For each batch of training data

1 Initialise total gradients: ∆wki = 0, ∆bk = 0
2 For each training example n in the batch:

Compute the error E n

For all k, i : Compute the gradients ∂E n/∂wki , ∂E
n/∂bk

Update the total gradients by accumulating the gradients for
example n

∆wki ← ∆wki +
∂E n

∂wki
∀k, i

∆bk ← ∆bk +
∂E n

∂bk
∀k

3 Update weights:

wki ← wki − η∆wki ∀k , i
bk ← bk − η∆bk ∀k

Terminate either after a fixed number of epochs, or when the error
stops decreasing by more than a threshold.
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Gradient in SLN

How do we compute the gradients ∂En

∂wki
and ∂En

∂bk
?

En =
1

2

K∑

k=1

(f nk − rnk )2 =
1

2

K∑

k=1

(
d∑

i=1

(wkix
n
i + bk)− rnk

)2

∂En

∂wki
= (f nk − rnk )xni = gn

k x
n
i gn

k = f nk − rnk

Update rule: Update a weight wki using the gradient of the error
with respect to that weight: the product of the difference between
the actual and target outputs for an example (f nk − rnk ) and the
value of the unit at the input to the weight (xi ).

Check your understanding: Show that the gradient for the bias is

∂En

∂bk
= gn

k
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Applying gradient descent to a single-layer network

x1 x2 x3 x4 x5

f2 =
5X

i=1

w2ixi

w24

�w24 =
X

n

(fn
2 � rn

2 )xn
4
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Acoustic context

Use multiple frames of acoustic context

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

/aa/  .11

/ae/  .09

/ax/  .04

/ao/  .04

/b/   .01

…

/i/  .65

…

/zh/  .01

Acoustic input
X(t) with +/-3 

frames of context

Phonetic Scores
(at time t)

f(t)

/aa/  .01
X(t-3)

X(t-2)

X(t-1)

X(t)

X(t+1)

X(t+2)

X(t+3)
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Hidden units

Single layer networks have limited computational power –
each output unit is trained to match a spectrogram directly (a
kind of discriminative template matching)

But there is a lot of variation in speech (as previously
discussed) – rate, coarticulation, speaker characteristics,
acoustic environment

Introduce an intermediate feature representation – “hidden
units” – more robust than template matching

Intermediate features represented by hidden units
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Hidden units extracting features

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

/aa/  .11

/ae/  .09

/ax/  .04

/ao/  .04

/b/   .01

…

/i/  .65

…

/zh/  .01

/aa/  .01
X(t-3)

X(t-2)

X(t-1)

X(t)

X(t+1)

X(t+2)

X(t+3)

.

.

.

.

.

.
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Hidden Units

/aa/  .01

/ae/  .03

/ax/  .01

/ao/  .04

/b/   .09

/ch/  .67

/d/  .06

…

/zh/  .15

/aa/  .11

/ae/  .09

/ax/  .04

/ao/  .04

/b/   .01

…

/i/  .65

…

/zh/  .01

/aa/  .01
X(t-3)

X(t-2)

X(t-1)

X(t)

X(t+1)

X(t+2)

X(t+3)

.

.

.

.

.

.

+

+

g

g

hj = relu

(
d∑

i=1

wjixi + bj

)
fk = softmax




H∑

j=1

vkjhj + bk



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Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative: relu′(x) =
d

dx
relu(x) =

{
0 if x ≤ 0

1 if x > 0
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Softmax

yk =
exp(ak)

∑K
j=1 exp(aj)

ak =
H∑

j=1

vkjhj + bk

This form of activation has the following properties

Each output will be between 0 and 1
The denominator ensures that the K outputs will sum to 1

Using softmax we can interpret the network output ynk as an
estimate of P(k|xn)
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Cross-entropy error function

Cross-entropy error function:

En = −
C∑

k=1

rnk ln ynk

Optimise the weights W to maximise the log probability – or
to minimise the negative log probability.

A neat thing about softmax: if we train with cross-entropy
error function, we get a simple form for the gradients of the
output weights:

∂En

∂vkj
= (yk − rk)︸ ︷︷ ︸

gk

hj
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Training multilayered networks – output layer

soft
max

relu

Outputs soft
max

Hidden units

soft
max

xi

hj

f1 f` fK

v1j v`j

vKj

wji
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Training multilayered networks – output layer

soft
max

relu

Outputs soft
max

Hidden units

soft
max

xi

hj

f1 f` fK

�K
�`�1

v1j v`j

vKj

wji

@E

@vkj
= �khj
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Backprop

Hidden units make training the weights more complicated,
since the hidden units affect the error function indirectly via
all the outputs

The Credit assignment problem: what is the “error” of a
hidden unit? how important is input-hidden weight wji to
output unit k?

Solution: back-propagate the deltas through the network

gj for a hidden unit is the weighted sum of the deltas of the
connected output units. (Propagate the g values backwards
through the network)

Backprop provides way of estimating the error of each hidden
unit
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Backprop

soft
max

relu

Outputs soft
max

Hidden units

soft
max

xi

hj

f1 f` fK

�K
�`�1

v1j v`j

vKj

gj =

 X

`

glv`j

!
relu0

j

@E

@wji
= gjxi

wji

@E

@vkj
= gkhj
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Back-propagation of error

The back-propagation of error algorithm is summarised as
follows:

1 Apply an input vectors from the training set, x, to the network
and forward propagate to obtain the output vector f

2 Using the target vector r compute the error E n

3 Evaluate the error signals gk for each output unit
4 Evaluate the error signals gj for each hidden unit using

back-propagation of error
5 Evaluate the derivatives for each training pattern

Back-propagation can be extended to multiple hidden layers,
in each case computing the gs for the current layer as a
weighted sum of the gs of the next layer
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Summary and Reading

Single-layer and multi-layer neural networks

Error functions, weight space and gradient descent training

Multilayer networks and back-propagation

Transfer functions – sigmoid and softmax

Acoustic context

M Nielsen, Neural Networks and Deep Learning,
http://neuralnetworksanddeeplearning.com (chapters
1, 2, and 3)

Next lecture: Neural network acoustic models
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