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The Search Problem in ASR

@ Find the most probable word sequence W = wy, wa, ..., wpy
given the acoustic observations X = x1, X2, ..., Xp:

~

W = arg max P(WI|X)
=argmaxp(X | W) P(W)
W ~—— ~——

acoustic model language model

@ Words are composed of state sequences so this problem
corresponds to finding the most probable allowable state
sequence (given the constraints of pronunciation lexicon and
language model) - Viterbi decoding

@ In a large vocabulary task evaluating all possible word
sequences in infeasible (even using an efficient exact
algorithm)

o Reduce the size of the search space through pruning unlikely
hypotheses
e Eliminate repeated computations
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Connected Word Recognition

@ The number of words in the utterance is not known
@ Word boundaries are not known: V words may potentially
start at each frame
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Connected Word Recognition

@ The number of words in the utterance is not known
@ Word boundaries are not known: V words may potentially
start at each frame
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speech: “the cat ate the canary”
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Backtrace to Obtain Word Sequence
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@ Backpointer array keeps track of word sequence for a path:
backpointer[word][wordStartFrame] = (prevWord, prevWordStartFrame)

@ Backtrace through backpointer array to obtain the word
sequence for a path
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Incorporating a bigram language model

Bigram
Language Model
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Trigram or longer span models require a word history.
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Computational Issues

@ Viterbi decoding performs an exact search in an efficient
manner

@ Exact search is not possible for large vocabulary tasks

o Cross-word triphones need to be handled carefully since the
acoustic score of a word-final phone depends on the initial
phone of the next word

o Long-span language models (eg trigrams) greatly increase the
size of the search space

@ Solutions:

Beam search (prune low probability hypotheses)

Dynamic search structures

Multipass search (— two-stage decoding)

Best-first search (— stack decoding / A* search)

An alternative approach: Weighted Finite State Transducers
(WEST)
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Weighted Finite State Transducers

@ Used by Kaldi

@ Weighted finite state automaton that transduces an input
sequence to an output sequence (Mohri 2008)

@ States connected by transitions. Each transition has

e input label
e output label
e weight
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Weighted Finite State Acceptors
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Weighted Finite State Transducers
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Weighted Finite State Transducers

Acceptor
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WEST Algorithms

Composition Combine transducers at different levels. For example
if G is a finite state grammar and L is a
pronunciation dictionary then Lo G transduces a
phone string to word strings allowed by the grammar

Determinisation Ensure that each state has no more than a single
output transition for a given input label

Minimisation transforms a transducer to an equivalent transducer
with the fewest possible states and transitions
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Applying WFSTs to speech recognition

@ Represent the following components as WFSTs

‘ transducer ‘ input sequence ‘ output sequence
G | word-level grammar | words words
L | pronunciation lexicon | phones words
C | context-dependency | CD phones phones
H | HMM HMM states CD phones

@ Composing L and G results in a transducer L o G that maps a
phone sequence to a word sequence

@ Ho Co Lo G results in a transducer that maps from HMM
states to a word sequence
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Context dependency transducer C

Context-independent “string”

X y X X y
OO0
Context-dependency transducer (weights not shown)

@ xixle_y @ yiylx_x @ xixly_x @ xex/x_y @ yiylx_e @

(x/e_y — x with left context e (start/end) and right context y)
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Decoding using WFSTs

@ We can represent the HMM acoustic model, pronunciation
lexicon and n-gram language model as four transducers: H, C,
L, G

@ Combining the transducers gives an overall “decoding graph”
for our ASR system — but minimisation and determination
means it is much smaller than naively combining the
transducers

@ But it is important in which order the algorithms are
combined otherwise the transducers may “blow-up” — basically
after each composition, first determinise then minimise

o In Kaldi, ignoring one or two details

HCLG = min(det(H o min(det(C o min(det(L o G))))))
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e Mohri (2008) — Mohri, Pereira, and Riley (2008). “Speech
recognition with weighted finite-state transducers.” In
Springer Handbook of Speech Processing, pp. 559-584.
Springer, 2008.
http://www.cs.nyu.edu/~mohri/pub/hbka.pdf

@ Decoding and WFSTs in Kaldi —
http://danielpovey.com/files/Lecture4.pdf
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