Words: Pronunciations and Language Models

Steve Renals

Automatic Speech Recognition— ASR Lecture 9
8 February 2016
HMM Speech Recognition

Recorded Speech → Acoustic Features → Acoustic Model

Acoustic Model → Search Space

Search Space → Decoded Text (Transcription)

Decoded Text (Transcription) → Language Model

Language Model → Search Space

Search Space → Lexicon

Lexicon → Search Space

Search Space → Acoustic Model

Acoustic Model → Training Data

Training Data → Acoustic Features

Acoustic Features → Recorded Speech
HMM Speech Recognition

Recorded Speech → Acoustic Features

Acoustic Model → Search Space

Lexicon → Search Space

Language Model → Search Space

Decoded Text (Transcription) → Recorded Speech

Training Data

Words: Pronunciations and Language Models
Words and their pronunciations provide the link between sub-word HMMs and language models.

Written by human experts.

Typically based on phones.
Pronunciation dictionary

- Words and their pronunciations provide the link between sub-word HMMs and language models
- Written by human experts
- Typically based on phones
- Constructing a dictionary involves
 1. Selection of the words in the dictionary—want to ensure high coverage of words in test data
 2. Representation of the pronunciation(s) of each word
Words and their pronunciations provide the link between sub-word HMMs and language models

- Written by human experts
- Typically based on phones

Constructing a dictionary involves

1. Selection of the words in the dictionary—want to ensure high coverage of words in test data
2. Representation of the pronunciation(s) of each word

Explicit modelling of pronunciation variation
Out-of-vocabulary (OOV) rate

- OOV rate: percent of word tokens in test data that are not contained in the ASR system dictionary
- Training vocabulary requires pronunciations for all words in training data (since training requires an HMM to be constructed for each training utterance)
- Select the recognition vocabulary to minimize the OOV rate (by testing on development data)
- Recognition vocabulary may be different to training vocabulary
- Empirical result: each OOV word results in 1.5–2 extra errors (>1 due to the loss of contextual information)
Many languages are morphologically richer than English: this has a major effect of vocabulary construction and language modelling.

- **Compounding** (eg German): decompose compound words into constituent parts, and carry out pronunciation and language modelling on the decomposed parts.

- **Highly inflected languages** (eg Arabic, Slavic languages): specific components for modelling inflection (eg factored language models).

- **Inflecting and compounding languages** (eg Finnish).

- All approaches aim to reduce ASR errors by reducing the OOV rate through modelling at the morph level; also addresses data sparsity.
3.3 Word Models, Vocabulary Growth, and Spontaneous Speech

To improve the word models, one could attempt to increase the vocabulary (recognition lexicon) of these models. A high coverage of the vocabulary of the training set might also reduce the OOV rate of the recognition data (test set). However, this may be difficult to obtain.

Figure 7 shows the development of the size of the training set vocabulary for growing amounts of training data. The corpora used for Finnish, Estonian, and Turkish are the datasets used for training language models (mentioned in Section 3.1.2). For comparison, a curve for English is also shown; the English corpus consists of text from the New York Times magazine. While there are fewer than 200,000 different word forms in the 40-million word English corpus, the corresponding values for Finnish and Estonian corpora of the same size exceed 1.8 million and 1.5 million words, respectively. The rate of growth remains high as the entire Finnish LM training data of 150 million words (used in Fin4) contains more than 4 million unique word forms. This value is thus ten times the size of the (rather large) word lexicon currently used in the Finnish experiments.

Figure 8 illustrates the development of the OOV rate in the test sets for growing amounts of training data. That is, assuming that the entire vocabulary of the training set is used as the recognition lexicon, the words in the test set that do not occur in the training set are OOVs. The test sets are the same as used in the speech recognition experiments, and for English, a held-out subset of the New York Times corpus was used. Again, the proportions of OOVs are fairly high for Finnish and Estonian; at 25 million words, the OOV rates are 3.6% and 4.4%, respectively (compared with 1.7% for Turkish and only 0.74%)

Single and multiple pronunciations

Words may have multiple pronunciations:

1. Accent, dialect: tomato, zebra
global changes to dictionary based on consistent pronunciation variations
2. Phonological phenomena: handbag/ h æ m b æ g
 I can’t stay / [ah k æ n s t ay]
3. Part of speech: project, excuse
Words may have multiple pronunciations:

1. Accent, dialect: *tomato*, *zebra*
 - global changes to dictionary based on consistent pronunciation variations

2. Phonological phenomena: *handbag*/ h ae m b ae g
 - *I can’t stay*/ [ah k ae n s t ay]

3. Part of speech: *project*, *excuse*

This seems to imply many pronunciations per word, including:

1. Global transform based on speaker characteristics
2. Context-dependent pronunciation models, encoding of phonological phenomena
Words may have multiple pronunciations:

1. Accent, dialect: *tomato, zebra*
 global changes to dictionary based on consistent pronunciation variations

2. Phonological phenomena: *handbag* / h æ m b æ g
 I can’t stay / [ah k ae n s t ay]

3. Part of speech: *project, excuse*

This seems to imply many pronunciations per word, including:

1. Global transform based on speaker characteristics
2. Context-dependent pronunciation models, encoding of phonological phenomena

BUT state-of-the-art large vocabulary systems average about 1.1 pronunciations per word: most words have a single pronunciation
Consistency vs Fidelity

- **Empirical finding**: adding pronunciation variants can result in reduced accuracy
- Adding pronunciations gives more “flexibility” to word models and increases the number of potential ambiguities—more possible state sequences to match the observed acoustics
Consistency vs Fidelity

- **Empirical finding**: adding pronunciation variants can result in reduced accuracy

- Adding pronunciations gives more “flexibility” to word models and increases the number of potential ambiguities—more possible state sequences to match the observed acoustics

- Speech recognition uses a **consistent** rather than a **faithful** representation of pronunciations

- A consistent representation requires only that the same word has the same phonemic representation (possibly with alternates): the training data need only be transcribed at the word level

- A faithful phonemic representation requires a detailed phonetic transcription of the training speech (much too expensive for large training data sets)
Modelling pronunciation variability

- State-of-the-art systems absorb variations in pronunciation in the acoustic models
- Context-dependent acoustic models may be though of as giving broad class representation of word context
- Cross-word context dependent models can implicitly represent cross-word phonological phenomena
- Hain (2002): a carefully constructed single pronunciation dictionary (using most common alignments) can result in a more accurate system than a multiple pronunciation dictionary
Current topics in pronunciation modelling

- Automatic learning of pronunciation variations or alternative pronunciations for some words – e.g. learning probability distribution over possible pronunciations generated by grapheme-to-phoneme models
 - Automatic learning of pronunciations of new words based on an initial seed lexicon
- Joint learning of the inventory of subword units and the pronunciation lexicon
- Sub-phonetic / articulatory feature model
- Grapheme-based modelling: model at the character level and remove the problem of pronunciation modelling entirely
HMM Speech Recognition

Recorded Speech

Acoustic Features

Training Data

Acoustic Model

Lexicon

Language Model

Search Space

Decoded Text (Transcription)

(Transcription)
HMM Framework for speech recognition. Let W be the universe of possible utterances, and X be the observed acoustics, then we want to find:

$$W^* = \arg \max_W P(W | X)$$

$$= \arg \max_W \frac{P(X | W)P(W)}{P(X)}$$

$$= \arg \max_W P(X | W)P(W)$$
HMM Framework for speech recognition. Let \(W \) be the universe of possible utterances, and \(X \) be the observed acoustics, then we want to find:

\[
W^* = \arg \max_W P(W \mid X)
\]

\[
= \arg \max_W \frac{P(X \mid W)P(W)}{P(X)}
\]

\[
= \arg \max_W P(X \mid W)P(W)
\]

Words are composed of a sequence of HMM states \(Q \):

\[
W^* = \arg \max_W P(X \mid Q, W)P(Q, W)
\]

\[
\simeq \arg \max_W \sum_Q P(X \mid Q)P(Q \mid W)P(W)
\]

\[
\simeq \arg \max_W \max_Q P(X \mid Q)P(Q \mid W)P(W)
\]
Three levels of model

- **Acoustic model** $P(X \mid Q)$
 Probability of the acoustics given the phone states: context-dependent HMMs using state clustering, phonetic decision trees, etc.

- **Pronunciation model** $P(Q \mid W)$
 Probability of the phone states given the words; may be as simple a dictionary of pronunciations, or a more complex model

- **Language model** $P(W)$
 Probability of a sequence of words. Typically an n-gram
Basic idea The language model is the prior probability of the word sequence $P(W)$

Use a language model to disambiguate between similar acoustics when combining linguistic and acoustic evidence

never mind the nudist play / never mind the new display

Use hand constructed networks in limited domains

Statistical language models: cover “ungrammatical” utterances, computationally efficient, trainable from huge amounts of data, can assign a probability to a sentence fragment as well as a whole sentence
Statistical language models

- For use in speech recognition a language model must be: statistical, have wide coverage, and be compatible with left-to-right search algorithms

- Only a few grammar-based models have met this requirement (e.g., Chelba and Jelinek, 2000), and do not yet scale as well as simple statistical models

- Until very recently n-grams were the state-of-the-art language model for ASR
 - Unsophisticated, linguistically implausible
 - Short, finite context
 - Model solely at the shallow word level
 - But: wide coverage, able to deal with “ungrammatical” strings, statistical and scaleable

- Probability of a word depends only on the identity of that word and of the preceding n-1 words. These short sequences of n words are called n-grams.
Bigram language model

- Word sequence $\mathbf{W} = w_1, w_2, \ldots w_M$

 $$P(\mathbf{W}) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1, w_2) \ldots P(w_M \mid w_1, w_2, \ldots w_{M-1})$$

- Bigram approximation—consider only one word of context:

 $$P(\mathbf{W}) \approx P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_2) \ldots P(w_M \mid w_{M-1})$$
Bigram language model

- Word sequence $W = w_1, w_2, \ldots w_M$

 $$P(W) = P(w_1)P(w_2 | w_1)P(w_3 | w_1, w_2)\ldots P(w_M | w_1, w_2, \ldots w_{M-1})$$

- Bigram approximation—consider only one word of context:

 $$P(W) \approx P(w_1)P(w_2 | w_1)P(w_3 | w_2)\ldots P(w_M | w_{M-1})$$

- Parameters of a bigram are the conditional probabilities $P(w_i | w_j)$

- Maximum likelihood estimates by counting:

 $$P(w_i | w_j) \sim \frac{c(w_j, w_i)}{c(w_j)}$$

 where $c(w_j, w_i)$ is the number of observations of w_j followed by w_i, and $c(w_j)$ is the number of observations of w_j (irrespective of what follows)
The zero probability problem

- Maximum likelihood estimation is based on counts of words in the training data.
- If a n-gram is not observed, it will have a count of 0—and the maximum likelihood probability estimate will be 0.
- The zero probability problem: just because something does not occur in the training data does not mean that it will not occur.
- As n grows larger, so the data grow sparser, and the more zero counts there will be.
The zero probability problem

- Maximum likelihood estimation is based on counts of words in the training data.
- If a n-gram is not observed, it will have a count of 0—and the maximum likelihood probability estimate will be 0.
- The zero probability problem: just because something does not occur in the training data does not mean that it will not occur.
- As n grows larger, so the data grow sparser, and the more zero counts there will be.
- Solution: smooth the probability estimates so that unobserved events do not have a zero probability.
- Since probabilities sum to 1, this means that some probability is redistributed from observed to unobserved n-grams.
Smoothing language models

- What is the probability of an unseen n-gram?
What is the probability of an unseen n-gram?

Add-one smoothing: add one to all counts and renormalize.
- “Discounts” non-zero counts and redistributes to zero counts
- Since most n-grams are unseen (for large n more types than tokens!) this gives too much probability to unseen n-grams (discussed in Manning and Schütze)

Absolute discounting: subtract a constant from the observed (non-zero count) n-grams, and redistribute this subtracted probability over the unseen n-grams (zero counts)

Kneser-Ney smoothing: family of smoothing methods based on absolute discounting that are at the state of the art (Goodman, 2001)
How is the probability distributed over unseen events?

Basic idea: estimate the probability of an unseen n-gram using the (n-1)-gram estimate.

Use successively less context: trigram \rightarrow bigram \rightarrow unigram.

Back-off models redistribute the probability “freed” by discounting the n-gram counts.
How is the probability distributed over unseen events?

Basic idea: estimate the probability of an unseen n-gram using the (n-1)-gram estimate

Use successively less context: trigram → bigram → unigram

Back-off models redistribute the probability “freed” by discounting the n-gram counts

For a bigram

\[P(w_i \mid w_j) = \frac{c(w_j, w_i) - D}{c(w_j)} \text{ if } c(w_j, w_i) > c \]

\[= P(w_i) b_{w_j} \text{ otherwise} \]

\(c \) is the count threshold, and \(D \) is the discount. \(b_{w_j} \) is the backoff weight required for normalization
Interpolation

- **Basic idea:** Mix the probability estimates from all the estimators: estimate the trigram probability by mixing together trigram, bigram, unigram estimates
- **Simple interpolation**

\[
\hat{P}(w_n | w_{n-2}, w_{n-1}) = \\
\lambda_3 P(w_n | w_{n-2}, w_{n-1}) + \lambda_2 P(w_n | w_{n-1}) + \lambda_1 P(w_n)
\]

With \(\sum_i \lambda_i = 1\)
- **Interpolation with coefficients conditioned on the context**

\[
\hat{P}(w_n | w_{n-2}, w_{n-1}) = \\
\lambda_3(w_{n-2}, w_{n-1})P(w_n | w_{n-2}, w_{n-1}) + \\
\lambda_2(w_{n-2}, w_{n-1})P(w_n | w_{n-1}) + \lambda_1(w_{n-2}, w_{n-1})P(w_n)
\]

- Set \(\lambda\) values to maximise the likelihood of the interpolated language model generating a *held-out* corpus (possible to use EM to do this)
Perplexity

- Measure the quality of a language model by how well it predicts a test set \(W \) (i.e. estimated probability of word sequence)

- Perplexity (\(PP(W) \)) – inverse probability of the test set \(W \), normalized by the number of words \(N \)

\[
PP(W) = P(W)^{-\frac{1}{N}} = P(w_1 w_2 \ldots w_N)^{-\frac{1}{N}}
\]

- Perplexity of a bigram LM

\[
PP(W) = (P(w_1)P(w_2|w_1)P(w_3|w_2)\ldots P(w_N|w_{N-1}))^{-\frac{1}{N}}
\]

- Example perplexities for different n-gram LMs trained on Wall St Journal (38M words)
 - Unigram – 962
 - Bigram – 170
 - Trigram – 109
Practical language modelling

- Work in log probabilities
- The ARPA language model format is commonly used to store n-gram language models (unless they are very big)
- Many toolkits: SRILM, IRSTLM, KenLM, Cambridge-CMU toolkit, ...
- Some research issues:
 - Advanced smoothing
 - Adaptation to new domains
 - Incorporating topic information
 - Long-distance dependencies
 - Distributed representations
Bengio 2003
Recurrent Neural Network Language Model

Mikolov et al (2010, 2011) - state of the art performance
References

- Jurafsky and Martin, chapter 4
- Hain (2002) - implicit pronunciation modelling by context-dependent acoustic models
- Gotoh and Renals (2003) - language modelling tutorial
- Good coverage of n-grams in Manning and Schütze (1999)
- Jelinek (1991) - “Up from trigrams!”
- Chelba and Jelinek (2000) - example of a probabilistic grammar-based language model
- Goodman (2001) - state-of-the-art smoothing for n-grams (Modified Kneser-Ney smoothing)
- Bengio (2003) - Neural probabilistic language model
- Mikolov et al (2011) - strategies for training large scale neural network language models (RNNs)