
Additional Note ASR

Multi-Layer Neural Networks

Steve Renals

27 February 2014

This note gives more details on training multi-layer networks.

1 Neural network architecture

Consider the simplest multi-layer network, with one hidden layer. The first layer involves M linear
combinations of the d-dimension inputs:

b j =

d∑
i=0

w(1)
ji xi j = 1, 2, . . . ,M.

As before x0 = 1, with the weights leading out from it corresponding to the biases. The quantities b j

are called activations, and the parameters w(1)
ji are the weights. The superscript ‘(1)’ indicates that this

is the first layer of the network. Each of the activations is then transformed by a nonlinear activation
function g, typically a sigmoid:

z j = h(b j) =
1

1 + exp(−b j)
(1)

The quantities z j are interpreted as the output of hidden units – so called because they do not have
values specified by the problem (as is the case for input units) or target values used in training (as is
the case for output units).

In the second layer, the outputs of the hidden units are linearly combined to give the activations of the
K output units:

ak =

M∑
j=0

w(2)
k j z j k = 1, 2, . . . ,K. (2)

Again z0 = 1, corresponding to the bias. This transformation is the second layer of the neural network
parameterized by weights w(2)

k j . The output units are transformed using an activation function; again a
sigmoid may be used:

yk = g(ak) =
1

1 + exp(−ak)
, (3)

or for multi-class classification problems, a softmax activation function:

g(ak) =
exp(ak)∑K
`=1 exp(a`)

These equations may be combined to give the overall equation that describes the forward propagation
through the network, and describes how an output vector is computed from an input vector, given the

1

Additional Note ASR

+

Inputs

x0 x1 xd

Bias

+

+ +

Hidden

Outputs

Bias
z0 z1 zM

yKy1

w(1)
Md

w(1)
10

w(2)
10 w(2)

KM

Figure 1: Network diagram for a multi-layer perceptron (MLP) with two layers of weights

weight matrices:

yk = g

 M∑
j=0

w(2)
k j h

 d∑
i=0

w(1)
ji xi


 (4)

This is illustrated in figure 1.

2 Activation functions

2.1 Sigmoid

If we have a two class problem, with classes C1 and C2, then we can express the posterior probability
of C1 using Bayes’ theorem:

P(C1|x) =
p(x|C1)P(C1)

p(x|C1)P(C1) + p(x|C2)P(C2)

If we divide top and bottom of the right hand side by p(x|C1)P(C1), then we obtain:

P(C1|x) =
1

1 +
p(x|C2)P(C2)
p(x|C1)P(C1)

(5)

If we define a as the ratio of log posterior probabilities (log odds):

a = ln
p(x|C1)P(C1)
p(x|C2)P(C2)

(6)

and substitute into (5) we obtain:

P(C1|x) = f (a) =
1

1 + exp(−a)
(7)

2

Additional Note ASR

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

g(
a)

Logistic sigmoid activation function g(a) = 1/(1+exp(−a))

Figure 2: Sigmoid function, g(a) = 1/(1 + exp(−a))

f (a) is the sigmoid activation function, plotted in figure 2. Sigmoid means ‘S’-shaped: the function
maps (−∞,∞) onto (0, 1) — it is a “squashing function”. If |a| is small then f (a) is approximately
linear: so a network with logistic sigmoid activation functions approximates a linear network when
the weights (and hence the inputs to the activation function) are small. As a increases, f (a) saturates
to 1, and as a decreases to become large and negative f (a) saturates to 0.

For a single layer neural network:
a = wT x + w0 (8)

If we have a single-layer neural network, with one output, and a sigmoid activation function f on the
output node, then from (7) and (8) we see that the posterior probability may be written:

P(C1 | x) = f (a) = f (wT x + w0) .

This is corresponds to a single layer neural network.

Therefore, for a two class problem (which may be represented with a single output), a single layer
neural network with a sigmoid activation function on the output may be regarded as providing a
posterior probability estimate.

2.2 Softmax

For more than two classes consider the following function, related to the log posterior probability of
class Ck:

ak = ln p(x|Ck)P(Ck)

3

Additional Note ASR

ak is the activation value of output k. If we substitute into Bayes’ theorem, we find that the posterior
probability is given by the following expression:

P(Ck|x) =
exp ak∑K

`=1 exp(a`)

This is sometimes referred to as the softmax or normalized exponential.

If we use this as the activation function for a multi-class single layer neural network:

yk =
exp(ak)∑
` exp a`

ak =

d∑
i=0

wkixi

Then it guarantees that the K output values will sum to 1, a necessary condition for probability esti-
mates.

3 Training: Back-propagation of error

We can train a network using gradient descent. This involves defining an error function E, and then
evaluating the derivatives ∂E/∂w(2)

k j and ∂E/∂w(1)
ji . The evaluation of these error derivatives proceeds

using a version the chain rule of differentiation, referred to as back-propagation of error, or just
backprop.

3.1 Gradient descent

The idea of gradient descent is that to minimize an error function with respect to the weights, we
want to take small steps in a downhill direction. We take small steps because the gradient is not
uniform, and if we take too big a step we may end up going uphill again! When considering this form
of optimization, we are considering the weight space. This is a K · (d + 1) dimension space, and a
specific weight matrix W corresponds to a point in weight space. The error function evaluates the
error value for a point in weight space (given the training set).

The gradient of E given W is written as ∇WE, the vector of partial derivatives of E with respect to the
elements of W:

∇WE =

(
∂E
∂w10

, . . . ,
∂E
∂wki

, . . . ,
∂E
∂wKd

)T

.

Descending in weight space means adjusting the weight matrix W by moving a small direction down
the gradient, which is the direction along which E decreases most rapidly. This means adjusting the
weight factor in the direction of −∇WE, or adjusting each weight wki by adding a factor −η · ∂E/∂wki,
where η is a small constant called the step size or learning rate.

The operation of gradient descent is as follows:

1. Start with a guess for the weight matrix W (e.g. small randomly chosen weights)

2. Update the weights by adjusting the weight matrix by a small distance in the direction in weight
space along which E decreases most rapidly: i.e. in the direction of −∇WE.

4

Additional Note ASR

3. Recompute the error, and goto 2, terminating either after a fixed number of steps, or when the
error stops decreasing by more than a threshold.

If we write the value of a weight at iteration τ as wτ
k j, then its updated value is given by:

wτ+1
k j = wτ

k j − η
∂E
∂wk j

(9)

The learning rate η specifies how much the parameters should be adjusted along the direction of the
gradient.

When training a neural network with a single hidden layer, the hidden-output weights can be trained
so as to move the output values closer to the targets. However, target values are not available for
hidden units, and so it is not possible to train the input-to-hidden weights in precisely the same way.
This is sometimes called the credit assignment problem: what is the “error” of a hidden unit? how
does the value of a particular input-to-hidden weight affect the overall error? The solution to this
problem is found by systematically deriving expressions for the relevant derivatives using the chain
rule of differentiation.

For convenience let’s first consider a neural network which uses sigmoid activation functions f for
the output units as well as the hidden units, so the network equation is:

yk = f

 M∑
j=0

w(2)
k j f

 d∑
i=0

w(1)
ji xi


 (10)

3.2 Error function

To train a neural network we need to define an error function (cost function). For now, we use the
sum-of-squares error function, obtained by summing over a training set of N examples:

E =

N∑
n=1

En (11)

En =
1
2

K∑
k=1

(yn
k − tn

k)2 (12)

The values of yn
k may be computed for each pattern using the MLP forward propagation equation (4).

To avoid clutter, we’ll drop the ‘(1)’ and ‘(2)’ superscripts when writing down weights.

To obtain the overall error gradients, we sum over the training examples:

∂E
∂wk j

=

N∑
n=1

∂En

∂wk j
(13)

∂E
∂w ji

=

N∑
n=1

∂En

∂w ji
(14)

5

Additional Note ASR

3.3 Hidden-to-output weights

First we would like to compute the error gradients for the hidden-to-output weights, ∂En/∂wk j. Now
we can write En in terms of these weights:

En =
1
2

K∑
k=1

(f (an
k) − tn

k)2

=
1
2

K∑
k=1

 f

 M∑
j=0

wk jzn
j

 − tn
k


2

. (15)

The derivatives of the error with respect to wk j can be broken down as follows:

∂En

∂wk j
=
∂En

∂an
k

∂an
k

∂wk j
(16)

The gradient of the error En with respect to the activations an
k is often referred to as the error signal

and given the notation δn
k , analagous to what we had for single layer neural networks.

δn
k =

∂En

∂an
k

(17)

And since:
∂an

k

∂wk j
= zn

j (18)

we may substitute (17) and (18) into (16) to obtain:

∂En

∂wk j
= δn

kzn
j (19)

where:

δn
k =

∂En

∂yn
k

·
∂yn

k

∂an
k

= (yn
k − tn

k) f ′(an
k) (20)

Here ∂y/k∂an
k is the derivative of the sigmoid function f ′(an

k). It turns out that

f ′(a) = f (a)(1 − f (a))

3.4 Input-to-hidden weights

Now we would like to compute the error gradients for the input-to-hidden weights, ∂E/∂w ji. To do
this we need to make sure that we take into account all the ways in which hidden unit j (and hence
weight w ji) can influence the error. To do this let’s look at δn

j , the error signal for hidden unit j:

δn
j =

∂En

∂bn
j

=

K∑
k=1

∂En

∂an
k

∂an
k

∂bn
j

=

K∑
k=1

δn
k

∂an
k

∂bn
j

(21)

6

Additional Note ASR

Outputs

Hidden units

z j

xi

w(2)
1 j w(2)

! j

δ!δ1

w(1)
ji

yKy!y1

w(2)
K j

δj = h′(bj)
∑

!

δ!w!j

δK

Figure 3: Back-propagation of error signals in an MLP

Since hidden unit j can influence the error through all the output units (since it is connected to all of
them), we must sum over all the output units’ contributions to δn

j . We need the expression for ∂an
k/∂bn

j ,
obtained by differentiating (2) and the sigmoid activation function:

∂an
k

∂bn
j

=
∂an

k

∂zn
j

∂zn
j

∂bn
j

= wk j f ′(bn
j) (22)

Substituting (22) into (21) we obtain:

δn
j = f ′(bn

j)
K∑

k=1

δn
kwk j. (23)

This is the famous back-propagation of error (backprop) equation. By applying the chain rule of
differentiation, backprop obtains the δ values for hidden units by “back-propagating” the δ values
of the outputs, weighted by the hidden-to-output weight matrix. This is illustrated in figure 3. The
derivatives of the input-to-hidden weights can thus be evaluated using:

∂En

∂w ji
=
∂En

∂bn
j

∂bn
j

∂w ji
= δ jxi (24)

This approach can be recursively applied to further hidden layers.

3.5 Back-propagation algorithm

The back-propagation of error algorithm is summarised as follows:

1. Apply the N input vectors from the training set, xn, to the network and forward propagate using
(4) to obtain the set of output vectors yn

2. Using the target vectors tn compute the error E using (11) and (12)

3. Evaluate the error signals δn
k for each output unit using (20)

7

Additional Note ASR

4. Evaluate the error signals δn
k for each hidden unit using back-propagation of error (23)

5. Use (19) and (24) to evaluate the derivatives for each training pattern, obtaining the overall
derivatives using (13) and (14).

And the computed gradients may then be used in the gradient descent algorithm above

4 Training with softmax outputs

Consider a single-layer (no hidden layer) network with a single output y with a sigmoid activation
function.

y = f (a) =
1

1 + exp(−a)
This is used for a two-class problem with classes C1 (denoted by target variable t = 1) and C2 (denoted
by t = 0). We can show that in the case of a sigmoid activation function we can interpret y as the
conditional probability P(C1 | x) and (1 − y) as P(C2 | x), where x is the input vector.

The target t is a binary variable. We know that, given x, the probability of t = 1 is P(t = 1 | x) =

P(C1 | x) = y; likewise we have P(t = 0 | x) = P(C2 | x) = 1 − y. We can combine this information
and write the distribution of the target t in the form:

P(t | x,W) = yt + (1 − y)1−t

(This is called the Bernoulli distribution.) Note that we have also explicitly shown the dependence on
the weights. We can write the log probability:

ln P(t | x,W) = t ln y + (1 − t) ln(1 − y)

We can use this to optimise the weights W to maximise the log probability – or to minimise the
negative log probability. We can do this by writing the error function as follows:

E(W) = −(t ln y + (1 − t) ln(1 − y)) .

This is the error for a single training example, denoted as En above. To avoid clutter the superscript
n is ignored in this section. If we want to train by gradient descent, we need the derivative ∂E/∂wi

(where wi connects the ith input to the single output). First we look at the single sigmoid output.

∂E
∂wi

=
∂E
∂y
·
∂y
∂a
·
∂a
∂wi

∂E
∂y

= −
t
y

+
1 − t
1 − y

=
−(1 − y)t + y(1 − t)

y(1 − y)
∂y
∂a

= y(1 − y) (usual sigmoid derivative)

∂a
∂wi

= xi (as usual)

∂E
∂wi

=
−(1 − y)t + y(1 − t)

y(1 − y)
· y(1 − y) · xi

= (−(1 − y)t + y(1 − t))xi = (y − t)xi

8

Additional Note ASR

So with a sigmoid activation function and the negative log probability error function, the error signal
δ = ∂E/∂a = (y − t). The derivative of the sigmoid cancels out. The sigmoid activation function
corresponds to a two class posterior probability estimation, and the negative log probability is the
‘natural’ or consistent error function: the network estimates a posterior probability, and the error
function corresponds to directly optimising the parameters to estimate that (log) probability.

Now consider the C class case in which we have a “1-from-C” coding scheme, and in which the kth
output yk is interpreted as P(Ck | x). In this case the negative log probability error function is:

E(W) = −

C∑
k=1

tk ln yk

If the transfer function for the output units is the softmax:

yk =
exp(ak)∑C
j=1 exp(a j)

then we need an expression for the derivative ∂E/∂wki. In this case the kth activation ak – and hence
the weight wki – influences the error function through all the output units, because of the normalising
term in the denominator. We have to take this into account when differentiating.

∂E
∂wki

=

C∑
c=1

∂E
∂yc
·
∂yc

∂ak
·
∂ak

∂wki

∂ak

∂wki
= xi(as usual)

∂E
∂yc

= −
tc

yc

Now to look at ∂yc/∂ak we look at two cases, when c = k, and when c , k.

First when c = k, we apply the quotient rule of differentiation:

∂yc

∂ac
=

∑
j exp(a j) · exp(ac) − exp(ac) exp(ac)

(
∑

j exp(a j))2

= yc − y2
c = yc(1 − yc)

And, when c , k:
∂yc

∂ak
=
− exp(ac) exp(ak)

(
∑

j exp(a j))2

= −ycyk

We can combine these using the Kronecker delta δck (δck = 1 if c = k, δck = 0 if c , k):

∂yc

∂ak
= yc(δck − yk)

Putting these derivatives together in the chain rule we have:

∂E
∂wki

=

C∑
c=1

(
−

tc

yc

)
(yc(δck − yk)) xi

=

C∑
c=1

tc(yk − δkc)xi

9

Additional Note ASR

Now, since we have a ‘1-from-C’ output coding, we know that
∑

c tcyk = yk (in fact this holds for the
weaker condition

∑
c tc = 1), thus:

∂E
∂wki

= (yk − tk)xi

Beautiful! Once again the derivative of the transfer function cancels, and we have the error signal
δk = yk − tk. The softmax is the multiclass counterpart of the sigmoid and is the natural partner of the
negative log probability error function.

Lots of subscripts in this section, so take care!

Some other comments:

• Sum-squared error function is not invalidated and is a good ‘general-purpose error function’.
But if you are doing classification, and interpret the outputs as posterior probability estimates,
then it is consistent to maximise the probability (or, in practice, minimise the negative log
probability). And you are rewarded by a nice derivative

• Don’t be confused by the Kronecker delta which is very different from the error signal δ... sorry
for overloaded notation, but both are standard

• logs to base e since we have exp in the transfer function

• Not having the transfer function derivative (y(1 − y)) results in larger derivative values, and
experiments consistently indicate that this leads to faster gradient descent training

• Remember all the derivatives in the question are for a single training example; you would use
these directly in stochastic gradient descent; otherwise you would sum over the training set.

10

	Neural network architecture
	Activation functions
	Sigmoid
	Softmax

	Training: Back-propagation of error
	Gradient descent
	Error function
	Hidden-to-output weights
	Input-to-hidden weights
	Back-propagation algorithm

	Training with softmax outputs

