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Layered neural networks: structure (1)
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Neural network with one hidden layer
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Neural network acoustic models
C Output layer
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C Hidden layer H
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o Input layer takes
several consecutive
frames of acoustic
features

@ Output layer
corresponds to classes
(e.g. phones, HMM
states)
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Input layer

o Multiple non-linear
hidden layers between
input and output

@ Neural networks also
called multi-layer
perceptrons
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Layered neural networks: structure (2)

@ d input units, M hidden units, K output units

@ Hidden layer: each of M units takes a linear combination of
the inputs x;:

e b;j: activations
° Wj(,l): first layer of weights
@ Activations transformed by a nonlinear activation function h
(e.g. a sigmoid):

1
| p— h H = —-——
% (b)) 1+ exp(—bj))

o z;: hidden unit outputs
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Logisitic sigmoid activation function

B S
(1+ exp(—2))

Logistic sigmoid activation function g(a) = 1/(1+exp(-a))

g(a) =

Layered neural networks: structure (3)

@ Outputs of the hidden units are linearly combined to give
activations of the output units:

a = Z W(J2)

@ The output units are transformed using the softmax activation

function:
exp ak

>t exp(ar)

@ If output unit k corresponds to class Ci, then interpret
outputs of trained network as posterior probability estimates

vk = glak) =

P(Cy [ x) =
-5 -4 -3 -2 -1 0 1 2 3 4 5
a
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Layered neural networks: training Gradient descent

o Weights w;; are the trainable parameters

@ Train the weights by adjusting them to minimise a cost
function which measures the error the network outputs yx
(per frame) compared with the target output tj

@ Cross-entropy between actual and target outputs

K
=—> tilogyy
k=1

@ Optimise the cost function using gradient descent
(back-propagation of error — backprop)
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@ Gradient descent can be used whenever it is possible to
compute the derivatives of the error function E with respect
to the parameters to be optimized W
@ Basic idea: adjust the weights to move downhill in weight
space
@ Weight space: space defined by all the trainable parameters
(weights)
@ Operation of gradient descent:
© Start with a guess for the weight matrix W (small random
numbers)
@ Update the weights by adjusting the weight matrix in the
direction of —VwE.
© Recompute the error, and iterate

@ The update for weight wy; at iteration 7+ 1 is:
T4+1 __ OE

.
Wi =W —T

Owyg;
The parameter 7 is the learning rate




HMM/NN hybrid systems Monophone HMM/NN hybrid system (1990s)

The Big Dumb P(phoneldata)
@ Basic idea: in an HMM, replace the GMMs used to estimate NeuraIgNetwork

output pdfs with the outputs of neural networks \ 54 Output Units \

@ Transform NN posterior probability estimates to scaled (2000  54) = 216 000 weights
likelihoods by dividing by the relative frequencies in the /><

training data of each class

\ 4000 Hidden Units |

P(Ck | x¢) Yk
P(x: | Cx) =
( t | k) 'Dtrain(Ck) Ptrain(Ck) (234 x 4000) = 936 000 weights

@ NN outputs correspond to phone classes or HMM states

\ (13 x 2 x 9) = 234 Input Units |

Pty

[x(t-4) 'x(-3) Tx(t2) T x(t-1) 1 x() [ x(t+1) 1 X(t+2) | X(t43) 1 x(t+4)|
@ Similar performance to context-dependent HMM/GMM
systems on WSJ
@ More errors on more complex tasks (broadcast news,
conversational telephone speech)
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HMM /NN vs HMM/GMM Tandem features (posteriorgrams)

@ Advantages of NN: @ Use NN probability estimates as an additional input feature
o Incorporate multiple frames of data at input stream in an HMM/GMM system —- ( Tandem features (i.e.
o More flexible than GMMs (i.e. not made of (nearly) local NN + acoustics), posteriorgrams)
components) — GMMs inefficient for non-linear class o Advantages of tandem features
boundaries i } d usi | ¢ | (
: e can be estimated using a large amount of temporal context (e
@ Disadvantages of NN: up to +25 frames) g g P &
o Context-independent (_monoph(?ne) models e encode phone discrimination information
o Weak speaker adaptation algorithms o only weakly correlated with PLP or MFCC features

e Computationally expensive - more difficult to parallelise than
GMM systems

@ Reading: Morgan and Bourlard (1995)

@ Tandem features: reduce dimensionality of NN outputs using
PCA, then concatenate with acoustic features (e.g. MFCCs)
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Tandem features Bottleneck features

One Frame of One Frame of GMHMM
PLP Features agEliEd Back-End
Features

One Frame of

Nine Frames of PLP Features MLP-Based Features

PCA
PLP Net Dimensionality
Reduction
Speech Input

Single-Frame

Critical Band Posterior

Energy Analysis;

51 Frames of Log-Critical
Band Energies

Morgan et al (2005)
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Critical bands (+VTLN) Speech
m. “ Segmentation
e-| FFT | A2 step: 10ms
hm’m"”‘"‘"‘ length: 25ms
Log—critical band 5 layer MLP
spectrogram _|Hamming %T"’ \
e DCT o :
1 speaker based :r 0 N
: pmean and : ; ‘E : PCA/ BN
| . ‘ I ] HLDA >
| variance . ‘; i features
' normalization ! gy
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@ Grezl and Fousek (2008)

@ Use a “bottleneck” hidden layer to provide features for a
HMM/GMM system
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@ Hybrid HMM/NN system can be powerful acoustic models —
but unadapted monophone NN-based system have worse

accuracies than state-of-the-art GMM systems on complex
tasks

@ Using NNs to provide tandem features (posteriorgrams,
bottleneck features) for GMMs can significantly reduce word
error rates (10-15%)
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Deep neural networks (DNNs) — Tandem system
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Unsupervised pretraining

DBN-DNN

DBN W,=0
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Hinton et al (2013)
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DNNs — what's new?

@ Training multi-hidden layers directly with gradient descent is
difficult — sensitive to initialisation, gradients can be very
small after propagating back through several layers.
Unsupervised pretraining(see Hinton et al 2012)

e Train a stacked restricted Boltzmann machine generative
model (unsupervised), then finetune with backprop
o Contrastive divergence training

@ Many hidden layers
e GPUs provide the computational power

e Wide output layer (context dependent phone classes)
o GPUs provide the computational power
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Example: hybrid HMM/DNN phone recognition (TIMIT)

@ Train a 'baseline’ three state monophone HMM/GMM system
(61 phones, 3 state HMMs) and Viterbi align to provide DNN
training targets (time state alignment)

@ The HMM/DNN system uses the same set of states as the
HMM/GMM system — DNN has 183 (61*3) outputs

@ Hidden layers — many experiments, exact sizes not highly
critical

o 3-8 hidden layers
e 1024-3072 units per hidden layer

e Multiple hidden layers always work better than one hidden
layer

@ Pretraining always results in lower error rates

@ Best systems have lower phone error rate than best

HMM/GMM systems (using state-of-the-art techniques such
as discriminative training, speaker adaptive training)
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Example: hybrid HMM/DNN large vocabulary

conversational speech recognition (Switchboard)

@ Recognition of American English conversational telephone
speech (Switchboard)

@ Baseline context-dependent HMM/GMM system

9,304 tied states

Discriminatively trained (BMMI — similar to MPE)

39-dimension PLP (+ derivatives) features

e Trained on 309 hours of speech

Hybrid HMM/DNN system

e Context-dependent — 9304 output units obtained from Viterbi
alignment of HMM/GMM system
e 7 hidden layers, 2048 units per layer

@ DNN-based system results in significant word error rate
reduction compared with GMM-based system

@ Can also use DNNs in tandem configuration (next lecture)

@ Basic idea: single linear input layer trained to map input
speaker-dependent speech to speaker-independent network

@ Training: linear input network (LIN) can either be fixed as the
identity or (adaptive training) be trained along with the other
parameters

o Testing: freeze the main (speaker-independent) network and
propagate gradients for speech from the target speaker to the
LIN, which is updated — linear transform learned for each
speaker

@ Requires supervised training data

Speaker adaptation in hybrid systems: LIN
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@ Basic idea: If HMM/GMM system is used to estimate a single
constrained MLLR adaptation transform, this can be viewed
as a feature space transform

@ Use the HMM/GMM system with the same tied state space
to estimate a single CMLLR transform for a given speaker,
and use this to transform the input speech to the DNN for the
target speaker

o Can operate unsupervised (since the GMM system estimates
the transform)

@ Limited to a single transform (regression class)
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