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Neural network acoustic models

Input layer

Hidden layer 1

Hidden layer H-1

Output layer

Hidden layer H

. . .

Input layer takes
several consecutive
frames of acoustic
features

Output layer
corresponds to classes
(e.g. phones, HMM
states)

Multiple non-linear
hidden layers between
input and output

Neural networks also
called multi-layer
perceptrons
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Layered neural networks: structure (1)
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Layered neural networks: structure (2)

d input units, M hidden units, K output units

Hidden layer: each of M units takes a linear combination of
the inputs xi :

bj =
d∑

i=0

w
(1)
ji xi

bj : activations

w
(1)
ji : first layer of weights

Activations transformed by a nonlinear activation function h
(e.g. a sigmoid):

zj = h(bj) =
1

1 + exp(−bj)

zj : hidden unit outputs
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Logisitic sigmoid activation function

g(a) =
1

(1 + exp(−a))
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Logistic sigmoid activation function   g(a) = 1/(1+exp(−a))
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Layered neural networks: structure (3)

Outputs of the hidden units are linearly combined to give
activations of the output units:

ak =
M∑

j=0

w
(2)
kj zj

The output units are transformed using the softmax activation
function:

yk = g(ak) =
exp ak∑K
`=1 exp(a`)

If output unit k corresponds to class Ck , then interpret
outputs of trained network as posterior probability estimates

P(Ck | x) = yk
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Layered neural networks: training

Weights wji are the trainable parameters

Train the weights by adjusting them to minimise a cost
function which measures the error the network outputs yk
(per frame) compared with the target output tk

Cross-entropy between actual and target outputs

E = −
K∑

k=1

tk log yk

Optimise the cost function using gradient descent
(back-propagation of error — backprop)
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Gradient descent

Gradient descent can be used whenever it is possible to
compute the derivatives of the error function E with respect
to the parameters to be optimized W
Basic idea: adjust the weights to move downhill in weight
space
Weight space: space defined by all the trainable parameters
(weights)
Operation of gradient descent:

1 Start with a guess for the weight matrix W (small random
numbers)

2 Update the weights by adjusting the weight matrix in the
direction of −∇WE .

3 Recompute the error, and iterate

The update for weight wki at iteration τ + 1 is:

w τ+1
ki = w τ

ki − η
∂E

∂wki

The parameter η is the learning rate
ASR Lectures 14&15 (Deep) Neural Networks 8



HMM/NN hybrid systems

Basic idea: in an HMM, replace the GMMs used to estimate
output pdfs with the outputs of neural networks

Transform NN posterior probability estimates to scaled
likelihoods by dividing by the relative frequencies in the
training data of each class

P(xt | Ck) ∝ P(Ck | xt)
Ptrain(Ck)

=
yk

Ptrain(Ck)

NN outputs correspond to phone classes or HMM states
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Monophone HMM/NN hybrid system (1990s) (1)

4000 Hidden Units

54 Output Units

x(t-4) x(t-3) x(t-2) x(t-1) x(t) x(t+1) x(t+2) x(t+3) x(t+4)

(13 x 2 x 9) = 234 Input Units

(234 x 4000) = 936 000 weights

(4000 x 54) = 216 000 weights

P(phone | data)The Big Dumb
Neural Network

Similar performance to context-dependent HMM/GMM
systems on WSJ
More errors on more complex tasks (broadcast news,
conversational telephone speech)
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HMM/NN vs HMM/GMM

Advantages of NN:

Incorporate multiple frames of data at input
More flexible than GMMs (i.e. not made of (nearly) local
components) — GMMs inefficient for non-linear class
boundaries

Disadvantages of NN:

Context-independent (monophone) models
Weak speaker adaptation algorithms
Computationally expensive - more difficult to parallelise than
GMM systems

Reading: Morgan and Bourlard (1995)
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Tandem features (posteriorgrams)

Use NN probability estimates as an additional input feature
stream in an HMM/GMM system —- (Tandem features (i.e.
NN + acoustics), posteriorgrams)

Advantages of tandem features

can be estimated using a large amount of temporal context (eg
up to ±25 frames)
encode phone discrimination information
only weakly correlated with PLP or MFCC features

Tandem features: reduce dimensionality of NN outputs using
PCA, then concatenate with acoustic features (e.g. MFCCs)
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Tandem features

IEEE SIGNAL PROCESSING MAGAZINE [82] SEPTEMBER 2005

recognition systems (SRSs), particularly in the context of the
conversational telephone speech recognition task. This ultimate-
ly would require both a revamping of acoustical feature extrac-
tion and a fresh look at the incorporation of these features into
statistical models representing speech. So far, much of our effort
has gone towards the design of new features and experimentation
with their incorporation in a modern speech-to-text system. The
new features have already provided significant improvements in
such a system in the 2004 NIST evaluation of recognizers of con-
versational telephone speech. The development of statistical
models to best incorporate the long time features is being
explored, but development is still in its early stages. 

BACKGROUND 
Mainstream speech recognition systems typically use a signal
representation derived from a cepstral transformation of a
short-term spectral envelope. This dependence on the spectral
envelope for speech sound discrimination dates back to the
1950s, as described in [11]. In turn, this style of analysis can be
traced back to the 1930s vocoder experiments of Homer Dudley
[14]. Perhaps more fundamentally, many speech scientists have
observed the relationship between the spectral components of
speech sounds and their phonetic identity. They have further
characterized these sounds by their correspondence to the state
of the speech articulators and the resulting resonances (for-
mants). By this view, one should use pattern recognition tech-
niques to classify new instances of speech sounds based on
their proximity in some spectral (or cepstral) space to speech
sounds collected for training the system. Modern statistical
speech recognition systems are fundamentally elaborations on

this principle; individual training examples are not used direct-
ly for calculating distances but rather are used to train models
that represent statistical distributions. The Markov chains that
are at the heart of these models represent the temporal aspect
of speech sounds and can accommodate differing durations for
particular instances. The overall structure provides a consistent
mathematical framework that can incorporate powerful learn-
ing methods such as maximum likelihood training using expec-
tation maximization [12]. Systems using short-term cepstra for
acoustic features and first-order Markov chains for the acoustic
modeling have been successful both in the laboratory and in
numerous applications, ranging from cell phone voice dialing
to dialog systems for use in call centers.

Despite these successes, there are still significant limita-
tions to speech recognition performance, particularly for con-
versational speech and/or for speech with significant acoustic
degradations from noise or reverberation. For this reason, we
have proposed methods that incorporate different (and larger)
analysis windows, which will be described below. We note in
passing that we and many others have already taken advantage
of processing techniques that incorporate information over
long time ranges, for instance for normalization (by cepstral
mean subtraction [2] or relative spectral analysis (RASTA)
[18]). We also have proposed features that are based on speech
sound class posterior probabilities, which have good properties
for both classification and stream combination.

TEMPORAL REPRESENTATIONS FOR EARS 
Our goal is to replace (or augment) the current notion of a
spectral-energy-based vector at time t with variables based on

[FIG1] Posterior-based feature generation system. Each posterior stream is created by feeding a trained multilayer perceptron (MLP)
with features that have different temporal and spectral extent. The “PLP Net” is trained to generate phone posterior estimates given
roughly 100 ms of telephone bandwidth speech after being processed by PLP analysis over nine frames. HATs processing is trained for
the same goal given 500 ms of log-critical band energies. The two streams of posteriors are combined (in a weighted sum where each
weight is a scaled version of local stream entropy) and transformed as shown to augment the more traditional PLP features. The
augmented feature vector is used as an observation by the Gaussian mixture hidden Markov model (GMHMM) system.
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Morgan et al (2005)
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Bottleneck features
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ABSTRACT

This work continues in development of the recently proposed
Bottle-Neck features for ASR. A five-layers MLP used in bottle-
neck feature extraction allows to obtain arbitrary feature size without
dimensionality reduction by transforms, independently on the MLP
training targets. The MLP topology – number and sizes of layers,
suitable training targets, the impact of output feature transforms, the
need of delta features, and the dimensionality of the final feature vec-
tor are studied with respect to the best ASR result. Optimized fea-
tures are employed in three LVCSR tasks: Arabic broadcast news,
English conversational telephone speech and English meetings. Im-
provements over standard cepstral features and probabilistic MLP
features are shown for different tasks and different neural net in-
put representations. A significant improvement is observed when
phoneme MLP training targets are replaced by phoneme states and
when delta features are added.

Index Terms— Bottle-neck, MLP structure, features, LVCSR

1. INTRODUCTION

Features for ASR obtained from neural networks have recently be-
come a component of state-of-the-art recognition systems [1]. They
are typically obtained by projecting a larger time span of a critical-
band spectrogram onto posterior probabilities of phoneme classes
using multi-layer perceptron (MLP). That is why they are sometimes
referred to as probabilistic features. In order to better fit the sub-
sequent Gaussian mixture model, the MLP estimates of posteriors
are logarithmized and decorrelated by Principal Components Analy-
sis (PCA) or Heteroscedastic Linear Discriminant Analysis (HLDA),
which also allows to reduce their dimensionality.

The performance of probabilistic features is often below that of
standard cepstral features. However, due to their different nature,
they exhibit a large amount of complementary information. The role
of the probabilistic features in ASR is thus to augment the cepstral
features. This is especially the case of TRAP-based probabilistic
features [2], where the input to the MLP is formed by temporal tra-
jectories of energies in independent critical bands. Since their intro-
duction, several modifications targeting the input spectrogram [3, 4],
the MLP structure [5] and MLP training targets [6] were proposed.
Despite all the effort, probabilistic features have not consistently out-

This work was partly supported by European IST projects AMIDA (FP6-033812)
and Caretaker (FP6-027231), by Grant Agency of Czech Republic under project No.
102/08/0707, by Czech Ministry of Education under project No. MSM0021630528,
and by the DARPA GALE program, Contract No. HR0011-06-C-0022. The hardware
used in this work was partially provided by CESNET under projects No. 162/2005 and
No. 201/2006.
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Fig. 1. Block diagram of the Bottle-Neck feature extraction with
TRAP-DCT raw features at the MLP input.

performed cepstral features and are being used only as their comple-
ment.

This misfortune seems to have ended last year with the introduc-
tion of the Bottle-Neck (BN) features [7]. BN features use five-layers
MLP with a narrow layer in the middle (bottle-neck). The fundamen-
tal difference between probabilistic and BN features is that the latter
are not derived from the class posteriors. Instead, they are obtained
as linear outputs of the neurons in the bottle-neck layer. This struc-
ture makes the size of the features independent of the number of the
MLP training targets. Hence it is easy to replace the phoneme targets
by finer and more numerous sub-phoneme classes, while retaining a
small feature vector without a need of a dimensionality reduction.
The bottle-neck MLP training process is the same as for probabilis-
tic features and employs all five layers. During feature extraction
only the first three layers are involved. It is illustrated in Fig. 1.

This work continues in the development of the BN features by
experimenting with the topology of the MLP (number of layers and
their sizes) as described in section 3.1. Section 3.2 evaluates the
contribution of switching from phoneme to sub-phoneme training
targets. Section 3.3 questions the necessity of decorrelating the fea-
tures prior to GMM-HMM modeling by PCA or HLDA transforms.
Finally, section 3.4 experiments with augmenting BN features by
their temporal derivatives in the same way it is commonly done to
cepstral features.

2. EXPERIMENTAL SETUP

Experiments were carried out on three LVCSR tasks using two in-
dependent MLP implementations, three independent HMM imple-
mentations and three different MLP raw input features in order to
provide a better objectivity in conclusions.

2.1. Raw Features for MLP

The purpose of the neural network in the BN system is to transform
a certain representation of speech into output features. The speech

Grezl and Fousek (2008)

Use a “bottleneck” hidden layer to provide features for a
HMM/GMM system
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Interim summary

Hybrid HMM/NN system can be powerful acoustic models —
but unadapted monophone NN-based system have worse
accuracies than state-of-the-art GMM systems on complex
tasks

Using NNs to provide tandem features (posteriorgrams,
bottleneck features) for GMMs can significantly reduce word
error rates (10-15%)
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Deep neural networks (DNNs) — Hybrid system
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Deep neural networks (DNNs) — Tandem system
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DNNs — what’s new?

Training multi-hidden layers directly with gradient descent is
difficult — sensitive to initialisation, gradients can be very
small after propagating back through several layers.
Unsupervised pretraining(see Hinton et al 2012)

Train a stacked restricted Boltzmann machine generative
model (unsupervised), then finetune with backprop
Contrastive divergence training

Many hidden layers

GPUs provide the computational power

Wide output layer (context dependent phone classes)

GPUs provide the computational power
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Unsupervised pretraining

IEEE SIGNAL PROCESSING MAGAZINE   [87]   NOVEMBER 2012

INTERFACING A DNN WITH AN HMM
After it has been discriminatively fine-tuned, a DNN outputs 
probabilities of the form HMMstate AcousticInput( )p ; . But to 
compute a Viterbi alignment or to run the forward-backward 
algorithm within the HMM framework, we require the likeli-
hood (AcousticInput HMMstate)p ; . The posterior probabilities 
that the DNN outputs can be converted into the scaled likeli-
hood by dividing them by the frequencies of the HMM states in 
the forced alignment that is used for fine-tuning the DNN [9]. 
All of the likelihoods produced in this way are scaled by the 
same unknown factor of AcousticInput( )p , but this has no 
effect on the alignment. Although this conversion appears to 
have little effect on some recognition tasks, it can be important 
for tasks where training labels are highly unbalanced (e.g., with 
many frames of silences). 

PHONETIC CLASSIFICATION 
AND RECOGNITION ON TIMIT
The TIMIT data set provides a simple and convenient way of test-
ing new approaches to speech recognition. The training set is 
small enough to make it feasible to try many variations of a new 
method and many existing techniques have already been bench-
marked on the core test set, so it is easy to see if a new approach 
is promising by comparing it with existing techniques that have 
been implemented by their proponents [23]. Experience has 
shown that performance improvements on TIMIT do not neces-
sarily translate into performance improvements on large vocab-
ulary tasks with less controlled recording conditions and much 
more training data. Nevertheless, TIMIT provides a good start-

ing point for developing a new approach, especially one that 
requires a challenging amount of computation. 

Mohamed et. al. [12] showed that a DBN-DNN acoustic 
model outperformed the best published recognition results on 
TIMIT at about the same time as Sainath et. al. [23] achieved a 
similar improvement on TIMIT by applying state-of-the-art 
techniques developed for large vocabulary recognition. 
Subsequent work combined the two approaches by using state-
of-the-art, DT speaker-dependent features as input to the DBN-
DNN [24], but this produced little further improvement, 
probably because the hidden layers of the DBN-DNN were 
already doing quite a good job of progressively eliminating 
speaker differences [25]. 

The DBN-DNNs that worked best on the TIMIT data formed 
the starting point for subsequent experiments on much more 
challenging large vocabulary tasks that were too computational-
ly intensive to allow extensive exploration of variations in the 
architecture of the neural network, the representation of the 
acoustic input, or the training procedure. 

For simplicity, all hidden layers always had the same size, 
but even with this constraint it was impossible to train all possi-
ble combinations of number of hidden layers [1, 2, 3, 4, 5, 6, 7, 
8], number of units per layer [512, 1,024, 2,048, 3,072], and 
number of frames of acoustic data in the input layer [7, 11, 15, 
17, 27, 37]. Fortunately, the performance of the networks on 
the TIMIT core test set was fairly insensitive to the precise 
details of the architecture and the results in [13] suggest that 
any combination of the numbers in boldface probably has an 
error rate within about 2% of the very best combination. This 
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[FIG1] The sequence of operations used to create a DBN with three hidden layers and to convert it to a pretrained DBN-DNN. First, a 
GRBM is trained to model a window of frames of real-valued acoustic coefficients. Then the states of the binary hidden units of the 
GRBM are used as data for training an RBM. This is repeated to create as many hidden layers as desired. Then the stack of RBMs is 
converted to a single generative model, a DBN, by replacing the undirected connections of the lower level RBMs by top-down, directed 
connections. Finally, a pretrained DBN-DNN is created by adding a “softmax” output layer that contains one unit for each possible state 
of each HMM. The DBN-DNN is then discriminatively trained to predict the HMM state corresponding to the central frame of the input 
window in a forced alignment.

Hinton et al (2013)
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Example: hybrid HMM/DNN phone recognition (TIMIT)

Train a ‘baseline’ three state monophone HMM/GMM system
(61 phones, 3 state HMMs) and Viterbi align to provide DNN
training targets (time state alignment)

The HMM/DNN system uses the same set of states as the
HMM/GMM system — DNN has 183 (61*3) outputs

Hidden layers — many experiments, exact sizes not highly
critical

3–8 hidden layers
1024–3072 units per hidden layer

Multiple hidden layers always work better than one hidden
layer

Pretraining always results in lower error rates

Best systems have lower phone error rate than best
HMM/GMM systems (using state-of-the-art techniques such
as discriminative training, speaker adaptive training)
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Example: hybrid HMM/DNN large vocabulary
conversational speech recognition (Switchboard)

Recognition of American English conversational telephone
speech (Switchboard)

Baseline context-dependent HMM/GMM system

9,304 tied states
Discriminatively trained (BMMI — similar to MPE)
39-dimension PLP (+ derivatives) features
Trained on 309 hours of speech

Hybrid HMM/DNN system

Context-dependent — 9304 output units obtained from Viterbi
alignment of HMM/GMM system
7 hidden layers, 2048 units per layer

DNN-based system results in significant word error rate
reduction compared with GMM-based system

Can also use DNNs in tandem configuration (next lecture)
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Speaker adaptation in hybrid systems: LIN

Basic idea: single linear input layer trained to map input
speaker-dependent speech to speaker-independent network

Training: linear input network (LIN) can either be fixed as the
identity or (adaptive training) be trained along with the other
parameters

Testing: freeze the main (speaker-independent) network and
propagate gradients for speech from the target speaker to the
LIN, which is updated — linear transform learned for each
speaker

Requires supervised training data
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Speaker adaptation in hybrid systems: CMLLR

Basic idea: If HMM/GMM system is used to estimate a single
constrained MLLR adaptation transform, this can be viewed
as a feature space transform

Use the HMM/GMM system with the same tied state space
to estimate a single CMLLR transform for a given speaker,
and use this to transform the input speech to the DNN for the
target speaker

Can operate unsupervised (since the GMM system estimates
the transform)

Limited to a single transform (regression class)
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