Search and Decoding
Today's lecture

Steve Renals @ Search in (large vocabulary) speech recognition
@ Viterbi decoding

Automatic Speech Recognition— ASR Lecture 9 ® Approximate search
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HMM Speech Recognition The Search Problem in ASR (1)

@ Find the most probable word sequence W = wy, wo, ..., wpy
given the acoustic observations X = x1,Xo, ..., X!

Recorded Speech Decoded Text
(Transcription)

W = arg max P(W|X)
=argmaxp(X | W) P(W)
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@ Words are composed of state sequences so we may express
this criterion by summing over all state sequences

Q=01,9,...,qn

W = argmvaxP(W)ZP(CN W)P(X | Q)
Q




The Search Problem in ASR (2) Viterbi Decoding

@ Viterbi criterion: approximate the sum over all state
sequences by using the most probable state sequence:

W = argmvaxP(W) ere]aQ)l(/v P(Q[W)P(X | Q)

Qu is the set of all state sequences corresponding to word
sequence W

@ The task of the search (or decoding) algorithm is to determine
W using the above equation given the acoustic, pronunciation
and language models

@ In a large vocabulary task evaluating all possible word
sequences in infeasible (even using an efficient exact
algorithm)

o Reduce the size of the search space through pruning unlikely
hypotheses
e Eliminate repeated computations
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Time-state trellis Compiling a Recognition Network

Set up the problem as a trellis of
states and times

@ Use the Viterbi approximation

@ At each state-time point keep the
single most probable path, discard
the rest

@ The most probable path is the one
at the end state at the final time

o Typically use log probabilities
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@ Naive exhaustive search: with a vocabulary size V/, and a
sequence of M words, there are VM different alternatives to
consider!

e Viterbi decoding (forward dynamic programming) is an
efficient, recursive algorithm that performs an optimal
exhaustive search

@ For HMM-based speech recognition, the Viterbi algorithm is
used to find the most probable path through a probabilistically
scored time/state lattice

@ Exploits first-order Markov property—only need to keep the
most probable path at each state:
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Build a network of HMM states from a network of phones from a
network of words
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Backtrace to Obtain Word Sequenc Incorporating a bigram language model
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o Backpointer array keeps track of word sequence for a path: Trigram or longer span models require a word history.
backpointer[word][wordStartFrame] = (prevWord, prevWordStartFrame)
@ Backtrace through backpointer array to obtain the word

sequence for a path
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Computational Issues Sharing Computation: Prefix Pronunciation Tree

@ Viterbi decoding performs an exact search in an efficient
manner

@ Exact search is not possible for large vocabulary tasks. If the
vocab size is V:
e Word boundaries are not known: V words may potentially
start at each frame
o Cross-word triphones need to be handled carefully since the
acoustic score of a word-final phone depends on the initial
phone of the next word
o Long-span language models (eg trigrams) greatly increase the
size of the search space
@ Solutions:
e Beam search (prune low probability hypotheses)
Dynamic search structures
Multipass search
Best-first search
Weighted Finite State Transducer (WFST) approaches

@ Need to build an HMM for each word in the vocabulary

@ Individual HMM for each word results in phone models
duplicated in different words

@ Share computation by arranging the lexicon as a tree
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@ Basic idea: Prune search paths which are unlikely to succeed

@ Remove nodes in the time-state trellis whose path probability
is more than a factor ¢ less probable then the best path (only
consider paths in the beam)

@ Both language model and acoustic model can contribute to
pruning
@ Pronunciation tree can limit pruning since the language model

probabilities are only known at word ends: each internal node
can keep a list of words it contributes to

@ Search errors: errors arising due to the fact that the most
probable hypothesis was incorrectly pruned

@ Need to balance search errors with speed
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@ Rather than compute the single best hypothesis the decoder
can output alternative hypotheses

N-best list: list of the N most probable hypotheses
Word Graph/Word Lattice:

o Nodes correspond to time (frame)
o Arcs correspond to word hypotheses (with associated acoustic
and language model probabilities)

Multipass search using progressively more detailed models
o Eg: use bigram language model on first pass, trigram on
second pass
e Transmit information between passes as word graphs
o Later passes rescore word graphs produced by earlier passes

ASR Lecture 9




Word Search Tree Static and dynamic networks

@ View recognition search as searching a tree
@ Viterbi decoding is breadth-first search — time-synchronous
@ Pruning deactivates part of the search tree

@ Also possible to use best first search (stack decoding) — time
asynchronous

Previous approaches constructed the search space
dynamically: less probable paths are not explored.
@ Dynamic search is resource-efficient but results in

e complex software

e tight interactions between pruning algorithms and data

structures

Static networks are efficient for smaller vocabularies, but not
immediately applicable to large vocabularies

Efficient static networks would enable

o Application of network optimization algorithms in advance
o Decoupling of search network construction and decoding
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Weighted Finite State Transducers

o Finite state automaton that transduces an input sequence to
an output sequence
@ States connected by transitions. Each transition has

e input label
e output label
e weight

() a:X/0.1 <> c:Z/0.5 <> d:W/0.1

g:U/0.1
( ) f:v/0.3
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e:Y/0.7

WEST Algorithms

Composition Used to combine transducers at different levels. For
example if G is a finite state grammar and P is a
pronunciation dictionary then D transduces a phone
string to any word string, whereas P o G transduces a
phone string to word strings allowed by the grammar

Determinisation removes non-determinancy from the network by
ensuring that each state has no more than a single
output transition for a given input label

Minimisation transforms a transducer to an equivalent transducer
with the fewest possible states and transitions
Several libraries for WFSTs eg:
@ Open FST: http://www.openfst.org/
o MIT: http://people.csail.mit.edu/ilh/fst/
@ AT&T: http://www.research.att.com/~fsmtools/fsm/
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@ Represent the following components as WFSTs
o Context-dependent acoustic models (C)
e Pronunciation dictionary (D)
e n-gram language model (L)

Search in speech recognition

@ Viterbi decoding
@ The decoding network is defined by their composition: e Connected word recognition
CoDol .
@ Incorporating the language model
@ Successively determinize and combine the component .
.. . @ Pruning
transducers, then minimize the final network _ o
@ Prefix pronunciation trees

@ Problem: although the final network may be of manageable
size, the construction process may be very memory intensive,
particularly with 4-gram language models or vocabularies of
over 50,000 words

@ Used successfully in several systems

Weighted finite state transducers
Evaluation
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