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Overview

HMMs and GMMs

Key models and algorithms for HMM acoustic models

Gaussians

GMMs: Gaussian mixture models

HMMs: Hidden Markov models

HMM algorithms

Likelihood computation (forward algorithm)
Most probable state sequence (Viterbi algorithm)
Estimting the parameters (EM algorithm)

ASR Lectures 4&5 Hidden Markov Models and Gaussian Mixture Models 2

Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and

W denotes a word sequence, the most likely word sequence W∗ is

given by

W∗ = arg max
W

P(W | X)

Applying Bayes’ Theorem:

P(W | X) =
p(X |W)P(W)

p(X)

∝ p(X |W)P(W)

W∗ = arg max
W

p(X |W)︸ ︷︷ ︸
Acoustic

model

P(W)︸ ︷︷ ︸
Language

model
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Acoustic Modelling

Acoustic
Model

Lexicon

Language
Model

Recorded Speech

Search
Space

Decoded Text 
(Transcription)

Training
Data

Signal
Analysis

Hidden Markov Model
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Hierarchical modelling of speech

"No right"

NO RIGHT

ohn r ai t

Utterance

Word

Subword

HMM

Acoustics

Generative Model
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Acoustic Model: Continuous Density HMM

s1 s2 s3 sEP(s2 | s1)

P(s2 | s2)

p(x | s2)

x

p(x | s1)

x x

P(s1|sI)

p(x | s3)

sI
P(s3 | s2) P(sE | s3)

P(s3 | s3)P(s1 | s1)

Probabilistic finite state automaton

Paramaters λ:

Transition probabilities: akj = P(sj | sk)

Output probability density function: bj(x) = p(x | sj)
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Acoustic Model: Continuous Density HMM

s1 s2 s3 sEsI

x3x1 x2 x4 x5 x6

Probabilistic finite state automaton

Paramaters λ:

Transition probabilities: akj = P(sj | sk)

Output probability density function: bj(x) = p(x | sj)
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HMM Assumptions

s1 s2 s3 sEP(s2 | s1)

P(s2 | s2)

p(x | s2)

x

p(x | s1)

x x

P(s1|sI)

p(x | s3)

sI
P(s3 | s2) P(sE | s3)

P(s3 | s3)P(s1 | s1)

1 Observation independence An acoustic observation x is
conditionally independent of all other observations given the
state that generated it

2 Markov process A state is conditionally independent of all
other states given the previous state
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HMM Assumptions

s(t−1) s(t) s(t+1)

x(t + 1)x(t − 1) x(t)

1 Observation independence An acoustic observation x is
conditionally independent of all other observations given the
state that generated it

2 Markov process A state is conditionally independent of all
other states given the previous state
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HMM OUTPUT DISTRIBUTION
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Output distribution

s1 s2 s3 sEP(s2 | s1)

P(s2 | s2)

p(x | s2)

x

p(x | s1)

x x

P(s1|sI)

p(x | s3)

sI
P(s3 | s2) P(sE | s3)

P(s3 | s3)P(s1 | s1)

Single multivariate Gaussian with mean µj , covariance matrix Σj :

bj(x) = p(x | sj) = N (x;µj ,Σj)

M-component Gaussian mixture model:

bj(x) = p(x | sj) =
M∑

m=1

cjmN (x;µjm,Σjm)
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Background: cdf

Consider a real valued random variable X

Cumulative distribution function (cdf) F (x) for X :

F (x) = P(X ≤ x)

To obtain the probability of falling in an interval we can do
the following:

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a)

= F (b)− F (a)

ASR Lectures 4&5 Hidden Markov Models and Gaussian Mixture Models 11



Background: pdf

The rate of change of the cdf gives us the probability density
function (pdf), p(x):

p(x) =
d

dX
F (x) = F ′(x)

F (x) =

∫ x

−∞
p(x)dx

p(x) is not the probability that X has value x . But the pdf is
proportional to the probability that X lies in a small interval
centred on x .

Notation: p for pdf, P for probability
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The Gaussian distribution (univariate)

The Gaussian (or Normal) distribution is the most common
(and easily analysed) continuous distribution

It is also a reasonable model in many situations (the famous
“bell curve”)

If a (scalar) variable has a Gaussian distribution, then it has a
probability density function with this form:

p(x |µ, σ2) = N(x ;µ, σ2) =
1√

2πσ2
exp

(−(x − µ)2

2σ2

)

The Gaussian is described by two parameters:

the mean µ (location)
the variance σ2 (dispersion)
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Plot of Gaussian distribution

Gaussians have the same shape, with the location controlled
by the mean, and the spread controlled by the variance

One-dimensional Gaussian with zero mean and unit variance
(µ = 0, σ2 = 1):
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Properties of the Gaussian distribution

N(x ;µ, σ2) =
1√

2πσ2
exp

(−(x − µ)2

2σ2

)
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Parameter estimation

Estimate mean and variance parameters of a Gaussian from
data x1, x2, . . . , xn

Use sample mean and sample variance estimates:

µ =
1

n

n∑

i=1

x i (sample mean)

σ2 =
1

n

n∑

i=1

(x i − µ)2 (sample variance)
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Exercise

Consider the log likelihood of a set of N data points {x1, . . . , xN}
being generated by a Gaussian with mean µ and variance σ2:

L = ln p({x1, . . . , xn} | µ, σ2) = −1

2

N∑

n=1

(
(xn − µ)2

σ2
− lnσ2 − ln(2π)

)

= − 1

2σ2

N∑

n=1

(xn − µ)2 − N

2
lnσ2 − N

2
ln(2π)

By maximising the the log likelihood function with respect to µ
show that the maximum likelihood estimate for the mean is indeed
the sample mean:

µML =
1

N

N∑

n=1

xn.
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The multidimensional Gaussian distribution

The d-dimensional vector x is multivariate Gaussian if it has a
probability density function of the following form:

p(x|µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

The pdf is parameterized by the mean vector µ and the
covariance matrix Σ.

The 1-dimensional Gaussian is a special case of this pdf

The argument to the exponential 0.5(x− µ)TΣ−1(x− µ) is
referred to as a quadratic form.
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Covariance matrix

The mean vector µ is the expectation of x:

µ = E [x]

The covariance matrix Σ is the expectation of the deviation of
x from the mean:

Σ = E [(x− µ)(x− µ)T ]

Σ is a d × d symmetric matrix:

Σij = E [(xi − µi )(xj − µj)] = E [(xj − µj)(xi − µi )] = Σji

The sign of the covariance helps to determine the relationship
between two components:

If xj is large when xi is large, then (xj − µj)(xi − µi ) will tend
to be positive;
If xj is small when xi is large, then (xj − µj)(xi − µi ) will tend
to be negative.
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Spherical Gaussian
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Diagonal Covariance Gaussian
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Full covariance Gaussian
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Parameter estimation

It is possible to show that the mean vector µ̂ and covariance
matrix Σ̂ that maximize the likelihood of the training data are
given by:

µ̂ =
1

N

N∑

n=1

xn

Σ̂ =
1

N

N∑

n=1

(xn − µ̂)(xn − µ̂)T

The mean of the distribution is estimated by the sample mean
and the covariance by the sample covariance
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Example data
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Maximum likelihood fit to a Gaussian
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Data in clusters (example 1)
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µ1 = [0 0]T µ2 = [1 1]T Σ1 = Σ2 = 0.2I
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Example 1 fit by a Gaussian
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k-means clustering

k-means is an automatic procedure for clustering unlabelled
data

Requires a prespecified number of clusters

Clustering algorithm chooses a set of clusters with the
minimum within-cluster variance

Guaranteed to converge (eventually)

Clustering solution is dependent on the initialisation
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k-means example: data set
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k-means example: initialization
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k-means example: iteration 1 (assign points to clusters)
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k-means example: iteration 1 (recompute centres)
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k-means example: iteration 2 (assign points to clusters)

0 5 10
0

10

5

(1,1)

(1,2)

(3,1)

(4,5)

(5,2)

(5,4)

(6,6) (7,6)

(8,4)

(10,5)

(10,0)

(2,9)

(4,13)

(7,8)

(4.33, 10)

(3.57, 3)

(8.75,3.75)

ASR Lectures 4&5 Hidden Markov Models and Gaussian Mixture Models 33

k-means example: iteration 2 (recompute centres)
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k-means example: iteration 3 (assign points to clusters)
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No changes, so converged
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Mixture model

A more flexible form of density estimation is made up of a
linear combination of component densities:

p(x) =
M∑

j=1

p(x|j)P(j)

This is called a mixture model or a mixture density

p(x|j): component densities

P(j): mixing parameters

Generative model:
1 Choose a mixture component based on P(j)
2 Generate a data point x from the chosen component using

p(x|j)
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Component occupation probability

We can apply Bayes’ theorem:

P(j |x) =
p(x|j)P(j)

p(x)
=

p(x|j)P(j)
∑M

j=1 p(x|j)P(j)

The posterior probabilities P(j |x) give the probability that
component j was responsible for generating data point x

The P(j |x)s are called the component occupation probabilities
(or sometimes called the responsibilities)

Since they are posterior probabilities:

M∑

j=1

P(j |x) = 1
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Parameter estimation

If we knew which mixture component was responsible for a
data point:

we would be able to assign each point unambiguously to a
mixture component
and we could estimate the mean for each component Gaussian
as the sample mean (just like k-means clustering)
and we could estimate the covariance as the sample covariance

But we don’t know which mixture component a data point
comes from...

Maybe we could use the component occupation probabilities
P(j |x)?
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Gaussian mixture model

The most important mixture model is the Gaussian Mixture
Model (GMM), where the component densities are Gaussians
Consider a GMM, where each component Gaussian
Nj(x;µj , σ

2
j ) has mean µj and a spherical covariance Σ = σ2I

p(x) =
P∑

j=1

P(j)p(x|j) =
P∑

j=1

P(j)Nj(x;µj , σ
2
j )

x1 x2 xd

p(x|1) p(x|2) p(x|M)

p(x)

P(1)
P(2)

P(M)
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GMM Parameter estimation when we know which
component generated the data

Define the indicator variable zjn = 1 if component j generated
component xn (and 0 otherwise)
If zjn wasn’t hidden then we could count the number of
observed data points generated by j :

Nj =
N∑

n=1

zjn

And estimate the mean, variance and mixing parameters as:

µ̂j =

∑
n zjnxn

Nj

σ̂2j =

∑
n zjn||xn − µk ||2

Nj

P̂(j) =
1

N

∑

n

zjn =
Nj

N
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Soft assignment

Estimate “soft counts” based on the component occupation
probabilities P(j |xn):

N∗j =
N∑

n=1

P(j |xn)

We can imagine assigning data points to component j
weighted by the component occupation probability P(j |xn)
So we could imagine estimating the mean, variance and prior
probabilities as:

µ̂j =

∑
n P(j |xn)xn∑
n P(j |xn)

=

∑
n P(j |xn)xn

N∗j

σ̂2j =

∑
n P(j |xn)||xn − µk ||2∑

n P(j |xn)
=

∑
n P(j |xn)||xn − µk ||2

N∗j

P̂(j) =
1

N

∑

n

P(j |xn) =
N∗j
N
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EM algorithm

Problem! Recall that:

P(j |x) =
p(x|j)P(j)

p(x)

We need to know p(x|j) and P(j) to estimate the parameters
of p(x|j) and to estimate P(j)....
Solution: an iterative algorithm where each iteration has two
parts:

Compute the component occupation probabilities P(j |x) using
the current estimates of the GMM parameters (means,
variances, mixing parameters) (E-step)
Computer the GMM parameters using the current estimates of
the component occupation probabilities (M-step)

Starting from some initialization (e.g. using k-means for the
means) these steps are alternated until convergence

This is called the EM Algorithm and can be shown to
maximize the likelihood
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Maximum likelihood parameter estimation

The likelihood of a data set X = {x1, x2, . . . , xN} is given by:

L =
N∏

n=1

p(xn) =
N∏

n=1

M∑

j=1

p(xn|j)P(j)

We can regard the negative log likelihood as an error function:

E = − lnL = −
N∑

n=1

ln p(xn)

= −
N∑

n=1

ln




M∑

j=1

p(xn|j)P(j)




Considering the derivatives of E with respect to the
parameters, gives expressions like the previous slide
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Example 1 fit using a GMM
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Fitted with a two component GMM using EM
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Peakily distributed data (Example 2)
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Example 2 fit by a Gaussian
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Example 2 fit by a GMM
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Fitted with a two component GMM using EM
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Example 2: component Gaussians
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Comments on GMMs

GMMs trained using the EM algorithm are able to self
organize to fit a data set

Individual components take responsibility for parts of the data
set (probabilistically)

Soft assignment to components not hard assignment — “soft
clustering”

GMMs scale very well, e.g.: large speech recognition systems
can have 30,000 GMMs, each with 32 components:
sometimes 1 million Gaussian components!! And the
parameters all estimated from (a lot of) data by EM
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Back to HMMs...

s1 s2 s3 sEP(s2 | s1)

P(s2 | s2)

p(x | s2)

x

p(x | s1)

x x

P(s1|sI)

p(x | s3)

sI
P(s3 | s2) P(sE | s3)

P(s3 | s3)P(s1 | s1)

Output distribution:

Single multivariate Gaussian with mean µj , covariance matrix
Σj :

bj(x) = p(x | sj) = N (x;µj ,Σj)

M-component Gaussian mixture model:

bj(x) = p(x | sj) =
M∑

m=1

cjmN (x;µjm,Σjm)
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The three problems of HMMs

Working with HMMs requires the solution of three problems:

1 Likelihood Determine the overall likelihood of an observation
sequence X = (x1, . . . , xt , . . . , xT ) being generated by an
HMM

2 Decoding Given an observation sequence and an HMM,
determine the most probable hidden state sequence

3 Training Given an observation sequence and an HMM, learn
the best HMM parameters λ = {{ajk}, {bj()}}
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1. Likelihood: The Forward algorithm

Goal: determine p(X | λ)

Sum over all possible state sequences s1s2 . . . sT that could
result in the observation sequence X

Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)
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Recursive algorithms on HMMs

Visualize the problem as a state-time trellis

k

i
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1. Likelihood: The Forward algorithm

Goal: determine p(X | λ)

Sum over all possible state sequences s1s2 . . . sT that could
result in the observation sequence X

Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

Forward probability, αt(sj): the probability of observing the
observation sequence x1 . . . xt and being in state sj at time t:

αt(sj) = p(x1, . . . , xt ,S(t) = sj | λ)
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1. Likelihood: The Forward recursion

Initialization

α0(sI ) = 1

α0(sj) = 0 if sj 6= sI

Recursion

αt(sj) =
N∑

i=1

αt−1(si )aijbj(xt)

Termination

p(X | λ) = αT (sE ) =
N∑

i=1

αT (si )aiE
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1. Likelihood: Forward Recursion

αt(sj) = p(x1, . . . , xt ,S(t) = sj | λ)

k

i

j

t-1

i

j

k

t

i

j

k

t+1

αt−1(sk)

αt−1(s j)

αt−1(si)

aki

a ji

aii
b j(xt)
�

αt(si)
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Viterbi approximation

Instead of summing over all possible state sequences, just
consider the most likely

Achieve this by changing the summation to a maximisation in
the recursion:

Vt(sj) = max
i

Vt−1(si )aijbj(xt)

Changing the recursion in this way gives the likelihood of the
most probable path

We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path
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Viterbi Recursion

Likelihood of the most probable path
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Viterbi Recursion

Backpointers to the previous state on the most probable path
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btt(si) = s j

ASR Lectures 4&5 Hidden Markov Models and Gaussian Mixture Models 59



2. Decoding: The Viterbi algorithm

Initialization

V0(sI ) = 1

V0(sj) = 0 if sj 6= sI

bt0(sj) = 0

Recursion

Vt(sj) =
N

max
i=1

Vt−1(si )aijbj(xt)

btt(sj) = arg
N

max
i=1

Vt−1(si )aijbj(xt)

Termination

P∗ = VT (sE ) =
N

max
i=1

VT (si )aiE

s∗T = btT (qE ) = arg
N

max
i=1

VT (si )aiE

ASR Lectures 4&5 Hidden Markov Models and Gaussian Mixture Models 60

Viterbi Backtrace

Backtrace to find the state sequence of the most probable path
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btt(si) = s j

btt+1(sk) = si
ASR Lectures 4&5 Hidden Markov Models and Gaussian Mixture Models 61

3. Training: Forward-Backward algorithm

Goal: Efficiently estimate the parameters of an HMM λ from
an observation sequence

Assume single Gaussian output probability distribution

bj(x) = p(x | sj) = N (x;µj ,Σj)

Parameters λ:

Transition probabilities aij :

∑

j

aij = 1

Gaussian parameters for state sj :
mean vector µj ; covariance matrix Σj
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Viterbi Training

If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state
A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding
Maximum likelihood estimate of aij , if C (si → sj) is the count
of transitions from si to sj

âij =
C (si → sj)∑
k C (si → sk)

Likewise if Zj is the set of observed acoustic feature vectors
assigned to state j , we can use the standard maximum
likelihood estimates for the mean and the covariance:

µ̂j =

∑
x∈Zj

x

|Zj |

Σ̂
j

=

∑
x∈Zj

(x − µ̂j)(x − µ̂j)T

|Zj |
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EM Algorithm

Viterbi training is an approximation—we would like to
consider all possible paths

In this case rather than having a hard state-time alignment we
estimate a probability

State occupation probability: The probability γt(sj) of
occupying state sj at time t given the sequence of
observations.
Compare with component occupation probability in a GMM

We can use this for an iterative algorithm for HMM training:
the EM algorithm

Each iteration has two steps:

E-step estimate the state occupation probabilities
(Expectation)

M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
(Maximisation)
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Backward probabilities

To estimate the state occupation probabilities it is useful to
define (recursively) another set of probabilities—the Backward
probabilities

βt(sj) = p(xt+1, xt+2, xT | S(t) = sj ,λ)

The probability of future observations given a the HMM is in
state sj at time t
These can be recursively computed (going backwards in time)

Initialisation
βT (si ) = aiE

Recursion

βt(si ) =
N∑

j=1

aijbj(xt+1)βt+1(sj)

Termination

p(X | λ) = β0(sI ) =
N∑

j=1

aIjbj(x1)β1(sj) = αT (sE )
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Backward Recursion

βt(sj) = p(xt+1, xt+2, xT | S(t) = sj ,λ)
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State Occupation Probability

The state occupation probability γt(sj) is the probability of
occupying state sj at time t given the sequence of observations
Express in terms of the forward and backward probabilities:

γt(sj) = P(S(t) = sj | X,λ) =
1

αT (sE )
αt(j)βt(j)

recalling that p(X|λ) = αT (sE )
Since

αt(sj)βt(sj) = p(x1, . . . , xt , S(t) = sj | λ)

p(xt+1, xt+2, xT | S(t) = sj ,λ)

= p(x1, . . . , xt , xt+1, xt+2, . . . , xT ,S(t) = sj | λ)

= p(X,S(t) = sj | λ)

P(S(t) = sj | X,λ) =
p(X, S(t) = sj | λ)

p(X|λ)
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Re-estimation of Gaussian parameters

The sum of state occupation probabilities through time for a
state, may be regarded as a “soft” count

We can use this “soft” alignment to re-estimate the HMM
parameters:

µ̂j =

∑T
t=1 γt(sj)x t∑T
t=1 γt(sj)

Σ̂
j

=

∑T
t=1 γt(sj)(x t − µ̂j)(x − µ̂j)T

∑T
t=1 γt(sj)
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Re-estimation of transition probabilities

Similarly to the state occupation probability, we can estimate
ξt(si , sj), the probability of being in si at time t and sj at
t + 1, given the observations:

ξt(si , sj) = P(S(t) = si ,S(t + 1) = sj | X,λ)

=
P(S(t) = si , S(t + 1) = sj ,X | λ)

p(X|Λ)

=
αt(si )aijbj(xt+1)βt+1(sj)

αT (sE )

We can use this to re-estimate the transition probabilities

âij =

∑T
t=1 ξt(si , sj)∑N

k=1

∑T
t=1 ξt(si , sk)
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Pulling it all together

Iterative estimation of HMM parameters using the EM
algorithm. At each iteration

E step For all time-state pairs
1 Recursively compute the forward probabilities
αt(sj) and backward probabilities βt(j)

2 Compute the state occupation probabilities
γt(sj) and ξt(si , sj)

M step Based on the estimated state occupation
probabilities re-estimate the HMM parameters:
mean vectors µj , covariance matrices Σj and
transition probabilities aij

The application of the EM algorithm to HMM training is
sometimes called the Forward-Backward algorithm

ASR Lectures 4&5 Hidden Markov Models and Gaussian Mixture Models 70

Extension to a corpus of utterances

We usually train from a large corpus of R utterances

If xrt is the tth frame of the r th utterance Xr then we can
compute the probabilities αr

t(j), βrt (j), γrt (sj) and ξrt (si , sj) as
before

The re-estimates are as before, except we must sum over the
R utterances, eg:

µ̂j =

∑R
r=1

∑T
t=1 γ

r
t (sj)x

r
t∑R

r=1

∑T
t=1 γ

r
t (sj)
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Extension to Gaussian mixture model (GMM)

The assumption of a Gaussian distribution at each state is
very strong; in practice the acoustic feature vectors associated
with a state may be strongly non-Gaussian

In this case an M-component Gaussian mixture model is an
appropriate density function:

bj(x) = p(x | sj) =
M∑

m=1

cjmN (x;µjm,Σjm)

Given enough components, this family of functions can model
any distribution.

Train using the EM algorithm, in which the component
estimation probabilities are estimated in the E-step
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EM training of HMM/GMM

Rather than estimating the state-time alignment, we estimate
the component/state-time alignment, and component-state
occupation probabilities γt(sj ,m): the probability of
occupying mixture component m of state sj at time t
We can thus re-estimate the mean of mixture component m
of state sj as follows

µ̂jm =

∑T
t=1 γt(sj ,m)x t∑T
t=1 γt(sj ,m)

And likewise for the covariance matrices (mixture models
often use diagonal covariance matrices)
The mixture coefficients are re-estimated in a similar way to
transition probabilities:

ĉjm =

∑T
t=1 γt(sj ,m)

∑M
`=1

∑T
t=1 γt(sj , `)
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Doing the computation

The forward, backward and Viterbi recursions result in a long
sequence of probabilities being multiplied

This can cause floating point underflow problems

In practice computations are performed in the log domain (in
which multiplies become adds)

Working in the log domain also avoids needing to perform the
exponentiation when computing Gaussians
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Summary: HMMs

HMMs provide a generative model for statistical speech
recognition

Three key problems
1 Computing the overall likelihood: the Forward algorithm
2 Decoding the most likely state sequence: the Viterbi algorithm
3 Estimating the most likely parameters: the EM

(Forward-Backward) algorithm

Solutions to these problems are tractable due to the two key
HMM assumptions

1 Conditional independence of observations given the current
state

2 Markov assumption on the states
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