Hidden Markov Models

and
Gaussian Mixture Models

Steve Renals and Peter Bell

Automatic Speech Recognition— ASR Lectures 4&5

28/31 January 2013

Overview

HMMs and GMMs

Key models and algorithms for HMM acoustic models

Gaussians

HMMs: Hidden Markov models
HMM algorithms

o Likelihood computation (forward algorithm)
o Most probable state sequence (Viterbi algorithm)
o Estimting the parameters (EM algorithm)

°
[*]
o GMMs: Gaussian mixture models
°
°

ASR Lectures 4&5

If X is the sequence of acoustic feature vectors (observations) and
W denotes a word sequence, the most likely word sequence W* is
given by

W* = arg max P(W | X)

Applying Bayes' Theorem:
p(X | W)P(W)
p(X)
o p(X [W)P(W)
W* =argmax p(X | W) P(W)
W ~e—— S~

P(W | X) =

Acoustic Language
model model

ASR Lectures 4&5 3

ASR Lectures 4&5

2

Fundamental Equation of Statistical Speech Recognition Acoustic Modelling

Recorded Speech

Signal
Analysis

Decoded Text
(Transcription)

Hidden Markov Model
\

Ac

stic

Data

Training

Language
Model

ASR Lectures 4&5

Hierarchical modelling of speech Acoustic Model: Continuous Density HMM

Generative Model 'O r“‘\t"‘ Utterance
Word
Subword
HMM
X
Acoustics Probabilistic finite state automaton

Paramaters A:

@ Transition probabilities: ax; = P(s; | s)

e Output probability density function: b;j(x) = p(x | s;)

ASR Lectures 4&5 ASR Lectures 4&5

Acoustic Model: Continuous Density HMM HMM Assumptions

i A 3 / 5 6 © Observation independence An acoustic observation x is
X X X X X X conditionally independent of all other observations given the

Probabilistic finite state automaton state that generated it

@ Markov process A state is conditionally independent of all
other states given the previous state

Paramaters A:
e Transition probabilities: ay; = P(sj | sk)

e Output probability density function: bj(x) = p(x | s;)

ASR Lectures 4&5 6 ASR Lectures 4&5 7

HMM Assumptions

s(1)

— p stt=D) s(t+1)

@ Observation independence An acoustic observation x is

conditionally independent of all other observations given the
state that generated it

Y

\ A
\

@ Markov process A state is conditionally independent of all
other states given the previous state

ASR Lectures 4&5

P(sy | s1) P(s2] 52) P(s3 | 53)
S > > S > 5 <)
(! >P<s1|s1> LJP(sa | s> IP(s3 | s P(sE|s3)< E)
p(x | s1) px| s2) p(x| s3)
X X X

Single multivariate Gaussian with mean uj, covariance matrix ¥/
bj(x) = p(x | 1) = N(x; o/, &)

M-component Gaussian mixture model:

Z CjmN

ASR Lectures 4&5 10

bi(x) = p(x |) 17,)

HMM OUTPUT DISTRIBUTION

ASR Lectures 4&5

Consider a real valued random variable X

e Cumulative distribution function (cdf) F(x) for X:

F(x) =P(X < x)

@ To obtain the probability of falling in an interval we can do
the following:

P(a< X < b)=P(X <b)—
= F(b)~ F(3)

P(X < a)

ASR Lectures 4&5

Background: pdf The Gaussian distribution (univariate)

@ The Gaussian (or Normal) distribution is the most common

@ The rate of change of the cdf gives us the probability density (and easily analysed) continuous distribution

function (pdf), p(x):
@ It is also a reasonable model in many situations (the famous

F'(x) “bell curve”)

plx) = o Flx) =
N If a (scalar) variable has a Gaussian distribution, then it has a
F(x) = / p(x)dx probability density function with this form:
—0o0

1 _ _ 2
exp (x —n)
2702 202

The Gaussian is described by two parameters:

o the mean y (location)
o the variance o2 (dispersion)

2 . 2
@ p(x) is not the probability that X has value x. But the pdf is p(x|p,0%) = N(x; p,0%) =
proportional to the probability that X lies in a small interval

centred on x.

@ Notation: p for pdf, P for probability

ASR Lectures 4&5 ASR Lectures 4&5

Plot of Gaussian distribution Properties of the Gaussian distribution

@ Gaussians have the same shape, with the location controlled
by the mean, and the spread controlled by the variance

@ One-dimensional Gaussian with zero mean and unit variance
(u=0,0%=1):

pdf of Gaussian Distribution
T

T
mean=0
variance=1

0.4

0.351

0.3

0.25

0.2

p(xm.s)

0.15

0.1

ASR Lectures 4&5

N(x; p, o

2):

p(xim.s)
o
o

pdfs of Gaussian distributions
T T

—@—uf)

1
V2mo? &P < 202

T
mean=0
variance=1

mean=0
variance=2

ASR Lectures 4&5

Parameter estimation Exercise

Consider the log likelihood of a set of N data points {x*,...,x"}

being generated by a Gaussian with mean g and variance 02.

@ Estimate mean and variance parameters of a Gaussian from

data x!, x2 X" 1 <X /(5 —)2
o L=Inp({x',....x"} | p,0%) == g <—|na2—|n(27r)>
. .) 2 o?
@ Use sample mean and sample variance estimates: =1

N

1 N N

1 ; -)2 — Zlne? - —

p= = E x! (sample mean) T T2 (xn — 1) 5 Ino 5 In(27)

n< n=1

By maximising the the log likelihood function with respect to
show that the maximum likelihood estimate for the mean is indeed

1 I‘ 2 .
= — - I
o p E 1(x 1) (sample variance)
' the sample mean:

1 N
UmL = N;Xn-

ASR Lectures 4&5 16 ASR Lectures 4&5 17

The multidimensional Gaussian distribution Covariance matrix

@ The mean vector p is the expectation of x:

. . . L e = Ex
@ The d-dimensional vector x is multivariate Gaussian if it has a K [x]

probability density function of the following form:

@ The covariance matrix X is the expectation of the deviation of
x from the mean:
(x/11.) s P (50 1) E k)
o —————— X _—— —_— p—
PRI == amyar g2 P\ T TR # % = E[(x — p)(x —)]
The pdf is parameterized by the mean vector p and the @ X is a d X d symmetric matrix:

covariance matrix 2 Ty = El0q —)5 —)] = ElCg —)5 —)] =
The sign of the covariance helps to determine the relationship
between two components:
o If x; is large when Xx; is large, then (x; — p;)(xi — pi) will tend
to be positive;
o If x; is small when x; is large, then (x; — pj)(x; — i) will tend
to be negative.

@ The 1-dimensional Gaussian is a special case of this pdf

o The argument to the exponential 0.5(x —) TE " (x — p) is
referred to as a quadratic form.

ASR Lectures 4&5 18 ASR Lectures 4&5 19

Spherical Gaussian Diagonal Covariance Gaussian

Gonlour plotof p(, x)

Surface plotof px,. x,)

Surtace plotof px,, x)

. AR g

z VNN YN

: A17500CNN O
/. ;":‘0‘:“‘\‘\“‘&\ DN

ASR Lectures 485 20
Parameter estimation

ot) oo @ It is possible to show that the mean vector fi and covariance
; matrix £ that maximize the likelihood of the training data are
given by:
//IS"I[/' "0 N
AN N
ATINOON .1
i =2
n=1
N
~ 1
B e [
N n=1

@ The mean of the distribution is estimated by the sample mean
and the covariance by the sample covariance

ASR Lectures 4&5 22 ASR Lectures 4&5 23

Example data Maximum likelihood fit to a Gaussian

X2
X2

5 L L L L L L 5 L L L L L L
-4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10

ASR Lectures 4&5 24 ASR Lectures 4&5 25

Data in clusters (example 1) Example 1 fit by a Gaussian

250 257
e . ° °
2 o 2
° o
1.5 1.5
N X A
. % &, .
1 ° o 9 ° ° :Q..g ‘o. ° ° 1
o ° ° ® . ° ope o ° s
L]
05 %o o s _o° "‘." L4) 05
o o % L x4 Ceeee ©° o
0 o <% g %’ * 0
° o ©% oo 4 ° °
LI .. ‘ &
05 (Y }. ®e o -05
I.: ° o

-1 . . -1 . .
15) 15 ,
5 -1 -05 0 05 1 1.5 2 A5 -1 -05 0 05 1 1.5 2

wy =0 07 u=[1 17 E;=3%,=02 =00 0T puy=[1 17 E;=%X,=02I

ASR Lectures 4&5 26 ASR Lectures 4&5 27

k-means clustering k-means example: data set

k-means example: initialization k-means example: iteration 1 (assign points to clusters)

k-means is an automatic procedure for clustering unlabelled

data

Requires a prespecified number of clusters

Clustering algorithm chooses a set of clusters with the

minimum within-cluster variance

Guaranteed to converge (eventually)

Clustering solution is dependent on the initialisation

ASR Lectures 4&5

A
*(4, 13)
*29)
‘78)
©6 76
°45) * (105)
*(5.4) * 84
‘1) ‘5.2
*flyl) 3.0 (100)
0 5 10

ASR Lectures 4&5

28

A
*@4.13)
ex)
‘7.8
[} L)
(6,6) (7.6)
°@5) ® (105)
*(5:4) *@84)
°0.2) 5.2)
(LN (3,0) (100)
0 5 10

A

A

ASR Lectures 4&5

4,13)

29

(7.8)

(7.6)

1 (105)
8.4)

10,0)

ASR Lectures 4&5

k-means example: iteration 1 (recompute centres)

k-means example: iteration 2 (recompute centres)

k-means example: iteration 2 (assign points to clusters)

ASR Lectures 4&5

*@4.13)
*
(4.33,10)
*29)
‘78)
©6)° 76
*@5) * (105)
0(5‘4) (8,4)* (8.24.2)
*
1) G17.25) %59
(L1 3.0 (100)
5 10

*@4.13)
*
(4.33, 10)
°@29)
‘78
©6° °76
*45) * (105) (105)
‘4 @4 K
e (8.75,3.75)
. (@57.3)
(12) (5.2)
(L1 (€X)) (10,0) (10,0)
5 10 10

(10,0)

No changes, so converged

ASR Lectures 4&5

10

Mixture model Component occupation probability

@ A more flexible form of density estimation is made up of a ® We can apply Bayes’ theorem:
linear combination of component densities:
P p(x)PG) p(xLj)P()

Plily) — —
(Ulx) p(x) Zj"il p(xj))P()

@ The posterior probabilities P(j|x) give the probability that
component j was responsible for generating data point x

M
p(x) =Y p(x1))P()
j=1

o This is called a mixture model or a mixture densit . . -
] N Y @ The P(j|x)s are called the component occupation probabilities
® p(x|j): component densities (or sometimes called the responsibilities)
® P(j): mixing parameters @ Since they are posterior probabilities:
o Generative model:
© Choose a mixture component based on P(j) M)
© Generate a data point x from the chosen component using Z P(jlx) =1
p(x1)) j=1

Parameter estimation Gaussian mixture model

@ The most important mixture model is the Gaussian Mixture
Model (GMM), where the component densities are Gaussians

@ /f we knew which mixture component was responsible for a o Consider a GMM, where each component Gaussian
data point: N;(x; uj,ajz) has mean p; and a spherical covariance X = a?l
° we would be able to assign each point unambiguously to a p P
mixture component ; ; ; . 2
X) = P x|j) = PU)N;(x; p;, 0%
e and we could estimate the mean for each component Gaussian p() Zl (/)p(|J) Zl (J) J(K> J)
j= j=

as the sample mean (just like k-means clustering)
e and we could estimate the covariance as the sample covariance

@ But we don't know which mixture component a data point
comes from...

@ Maybe we could use the component occupation probabilities

P(j|x)?

ASR Lectures 4&5 38 ASR Lectures 4&5 39

GMM Parameter estimation when we know which Soft assignment

component generated the data

@ Estimate “soft counts” based on the component occupation
probabilities P(j|x"):

@ Define the indicator variable zj, = 1 if component j generated
component x" (and 0 otherwise) N

. * 1 n

e If zj, wasn't hidden then we could count the number of Ny = Z P(j[x")
n=1

observed data points generated by j:
@ We can imagine assigning data points to component j

N
N; = szn weighted by the component occupation probability P(j|x")
] @ So we could imagine estimating the mean, variance and prior

@ And estimate the mean, variance and mixing parameters as: probabilities as:

~ Zn zj,,x” il — Zn P(j|xn)xn — Zn P(j|xn)xn
i = T J iy n *
=y >, PUI") N
2 L zinllx" = 2 52— S PUKDIX" — pil® _ 3, PUIK)IX" — gy
J N : 2, PGI7) N;
AL 1 N; . 1 N*
Py) == in=—2 N= — ix") = L
() NEﬂjzj N PU) ,\,;me) N

ASR Lectures 4&5 40 ASR Lectures 4&5 41

EM algorithm Maximum likelihood parameter estimation

@ Problem! Recall that: o The likelihood of a data set X = {x!,x?,...,x"N} is given by:
p(x) L=T1rx" =T1>_rx"1)PU)
We need to know p(x|j) and P(j) to estimate the parameters n=1 n=1j=1
of p(x|j) and to estimate P(j).... e We can regard the negative log likelihood as an error function:
@ Solution: an iterative algorithm where each iteration has two N
parts: n
o Compute the component occupation probabilities P(j|x) using E=-InL=- Z In p(x")
n=1

the current estimates of the GMM parameters (means,

variances, mixing parameters) (E-step) M
o Computer the GMM parameters using the current estimates of =— Z In Z p(x"[/))P())
the component occupation probabilities (M-step) n=1 j=1

e Starting from some initialization (e.g. using k-means for the
means) these steps are alternated until convergence

@ This is called the EM Algorithm and can be shown to
maximize the likelihood

@ Considering the derivatives of E with respect to the
parameters, gives expressions like the previous slide

ASR Lectures 4&5 42 ASR Lectures 4&5 43

Example 1 fit using a GMM Peakily distributed data (Example 2)

25
L4 .
2 . o .
e o 3r 3 ® .
150 A e
. o % &, *® o0 2 oo 8 ° 4
1 . ° '. o % ::‘0’3‘ . ° . ° .“ . ® .
° ° . oo © H 1 o ° o meo ° L]
05 ® e o oo K S Qo A] O:.. o ° o
. ° L X .:.o- o o 0 ° ak [4 ., 00...
] -. ':.0..0" 4 ° °° . .'. ee
° o...u.‘...Os ° e - . e .:. ° o o
.
05 '%.g % .°° o 2 . °.°
, .
- ° . -3 °,
-15 : : . : : :) -4
15 -1 ~05 0 05 1 15 2 .
_5 I
24 -3 -2 -1 0 1 2 3 4
25
| . py=p,=[0 0T E;=01 X;=2I
Q

ASR Lectures 4&5

py=p,=[0 07 E;=01 X;=2I

Z
ASR Lectures 4&5 46 ASR Lectures 4&5

Example 2: component Gaussians Comments on GMMs

@ GMMs trained using the EM algorithm are able to self
organize to fit a data set

@ Individual components take responsibility for parts of the data
set (probabilistically)

@ Soft assignment to components not hard assignment — “soft
clustering”

.] .] @ GMMs scale very well, e.g.: large speech recognition systems
T T T T A can have 30,000 GMMs, each with 32 components:
sometimes 1 million Gaussian components!! And the
parameters all estimated from (a lot of) data by EM

Back to HMMs... The three problems of HMMs
P(s1 | s1) P(s3 | 52) P(s3] s3)
Sy > s > 5 > 53 > s Working with HMMs requires the solution of three problems:
P(s1ls) P(s2 | 51 P(s3 | 5o P(sg | 53) o) o)
© Likelihood Determine the overall likelihood of an observation
p(x | s1) p(x|s2) p(x|s3) sequence X = (X1,...,X¢,...,XxT7) being generated by an
HMM
@ Decoding Given an observation sequence and an HMM,
Output distribution: determine the most probable hidden state sequence
e Single multivariate Gaussian with mean 1/, covariance matrix © Training Given an observation sequence and an HMM, learn
3 o the best HMM parameters A = {{ajc}, {b;()}}
bj(x) = p(x | 57) = N(x; p/, X)
@ M-component Gaussian mixture model:
M
bi(x) = p(x |) = > cimN (x; /™, E7)
m=1

ASR Lectures 4&5 50 ASR Lectures 4&5 51

1. Likelihood: The Forward algorithm Recursive algorithms on HMMs

@ Goal: determine p(X | A)

@ Sum over all possible state sequences s;s, ... st that could Visualize the problem as a state-time trellis

result in the observation sequence X t-1 t t+l

@ Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

ASR Lectures 4&5 ASR Lectures 4&5 53

1. Likelihood: The Forward algorithm 1. Likelihood: The Forward recursion

e Goal: determine p(X | A)

@ Initialization
@ Sum over all possible state sequences s;1s, ...s7 that could tializatio

result in the observation sequence X
010(51) =1

@ Rather than enumerating each sequence, compute the ao(s;) = 0 if s; # s/

probabilities recursively (exploiting the Markov assumption)

o Forward probability, c(s;): the probability of observing the @ Recursion
observation sequence x; ...x; and being in state s; at time t:

N
ae(sj) = Z ar—1(si)ajjbj(x¢)
Oét(sij):P(X]_,...,Xt,S(t)ISj | A) i=1

@ Termination

(X |)\) = QT SE) ZaT s,)a,E

ASR Lectures 4&5 54 ASR Lectures 4&5 55

1. Likelihood: Forward Recursion Viterbi approximation

@ Instead of summing over all possible state sequences, just
consider the most likely

@ Achieve this by changing the summation to a maximisation in
the recursion:

Vi(sj) = miax Vi—1(si)ajjbj(x¢)

@ Changing the recursion in this way gives the likelihood of the
most probable path

@ We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path

a;—1(sk)
ASR Lectures 4&5 56 ASR Lectures 4&5 57
Viterbi Recursion Viterbi Recursion
Likelihood of the most probable path Backpointers to the previous state on the most probable path
t-1 t bt,(s;) = sj t+l

bj(x,)— Vi(si)

Vie1(sk)

ASR Lectures 4&5 58 ASR Lectures 4&5 59

2. Decoding: The Viterbi algorithm Viterbi Backtrace

@ Initialization

Vo(S/) =
Vo(s))
bto(s))

1
0 if sj;és/
0

@ Recursion

N
Vi(sj) = max Ve-1(si)aijbj(x¢)

1=
N
btt(sj) = argmax Vi—a(si)ajbj(xt)
@ Termination

P* = VT(SE) = m,\aIX VT(s,-)a,-E

i=1

N
S*T = th(qE) = arg rpzalx VT(s,-)a,-E

ASR Lectures 4&5

3. Training: Forward-Backward algorithm

@ Goal: Efficiently estimate the parameters of an HMM A from
an observation sequence

@ Assume single Gaussian output probability distribution
bj(x) = p(x | 5) = N(x; o/, &)

@ Parameters A:
o Transition probabilities aj;:

Za,-jzl
J

o Gaussian parameters for state s;:
mean vector p/; covariance matrix ¥/

ASR Lectures 4&5

Backtrace to find the state sequence of the most probable path
t-1 t bt,(s;) = 5, t+l
Vi(si)

bti1(sk) = i

ASR Lectures 4&5

Viterbi Training

o If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state

@ A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding

e Maximum likelihood estimate of aj, if C(s; — s;) is the count
of transitions from s; to s;

5. — C(S,' — Sj)
Y Zk C(S,' — Sk)

o Likewise if Z; is the set of observed acoustic feature vectors
assigned to state j, we can use the standard maximum
likelihood estimates for the mean and the covariance:

ZXEZJ' X

==
Z
oi Sueglc— W)~)T

|Zj]

ASR Lectures 4&5

61

EM Algorithm Backward probabilities

I
@ Viterbi training is an approximation—we would like to
consider all possible paths
@ In this case rather than having a hard state-time alignment we
estimate a probability
e State occupation probability: The probability (s;) of
occupying state s; at time t given the sequence of
observations.
Compare with component occupation probability in a GMM
@ We can use this for an iterative algorithm for HMM training:
the EM algorithm
@ Each iteration has two steps:
E-step estimate the state occupation probabilities
(Expectation)
M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
(Maximisation)

ASR Lectures 4&5

64

@ To estimate the state occupation probabilities it is useful to
define (recursively) another set of probabilities—the Backward
probabilities

Bt(sj) = p(xt+17xt+27xT | S(t) =5 A)
The probability of future observations given a the HMM s in
state 5; at time t

@ These can be recursively computed (going backwards in time)
o Initialisation

Br(si) = aie

o Recursion

N
Be(si) = Z ajjbj(x¢+1)Be+1(s))
j=1
e Termination

p(X | X) = Bo(s1) =Y _ aybj(x1)p1(s;) = ar(se)

j=1
State Occupation Probability

Be(sj) = P(Xt41, Xer2, X7 | S(t) = 55, A)

t-1 t+
bi(Xi+1)

Bi(5:)

Brr1(s))

ik
bi(X41)

Brr1(sk)

ASR Lectures 4&5

e The state occupation probability ~:(s;) is the probability of
occupying state s; at time t given the sequence of observations
@ Express in terms of the forward and backward probabilities:

1) .
OéT(SE)at(J)Bt(J)

Ye(s) = P(S(8) = 55 [X, A) =

recalling that p(X|A) = ar(sg)
@ Since

ae(s))Be(sj) = p(x1, ..., xe, S(t) = 55 | A)

p(X¢y1, Xey2,x7 | S(t) = Sjv)‘)
= Pp(X1, .-y Xe, Xet 1, X425 - -, XT, S(E) = 57 | A)
P(X,5(t) =s; | A)

P(X,5(t) =5 | A)
p(X|A)

P(S(t) = 5; | X, A) =

ASR Lectures 4&5 67

Re-estimation of Gaussian parameters Re-estimation of transition probabilities

@ Similarly to the state occupation probability, we can estimate
&t(si, sj), the probability of being in s; at time t and s; at

@ The sum of state occupation probabilities through time for a t + 1, given the observations:

state, may be regarded as a “soft” count

@ We can use this “soft” alignment to re-estimate the HMM i(siysj) = P(S(t) =si, S(t+1) =57 | X, A)
parameters: _ P(S(t) =5, S(t+1) =5, X | A)
- a P(X|A)
- _ Sj)X
o= M _ ae(si)ajjbj(xe11)Be1(s))
> e=17t(8)) N at(se)
: T . o)T
A _ Si I\ Xt — X —
3= 2i=1 il J)(Tt w)) @ We can use this to re-estimate the transition probabilities
> t—1 7e(s))

5 — >y &elsis)
D DN ACID

ASR Lectures 4&5 (] ASR Lectures 4&5 69

Pulling it all together Extension to a corpus of utterances

o lterative estimation of HMM parameters using the EM
algorithm. At each iteration
E step For all time-state pairs

© Recursively compute the forward probabilities

@ We usually train from a large corpus of R utterances

o If x} is the tth frame of the rth utterance X" then we can

.y) compute the probabilities of(j), 8L (j), vi(s;) and &L (s;,s;) as
a¢(s;) and backward probabilities 3:(j) bef P P :U), B:U). () §i(si>)
@ Compute the state occupation probabilities etore
Ye(s;) and &(si, s5) @ The re-estimates are as before, except we must sum over the
M step Based on the estimated state occupation R utterances, eg:

probabilities re-estimate the HMM parameters:
mean vectors g/, covariance matrices ¥/ and
transition probabilities aj;

@ The application of the EM algorithm to HMM training is
sometimes called the Forward-Backward algorithm

R T
R T
D=1 2e=1 71 (5))

=

ASR Lectures 4&5 70 ASR Lectures 4&5 71

Extension to Gaussian mixture model (GMM)

@ The assumption of a Gaussian distribution at each state is
very strong; in practice the acoustic feature vectors associated
with a state may be strongly non-Gaussian

@ In this case an M-component Gaussian mixture model is an
appropriate density function:

M
bi(x) = p(x |) = Y cimN (x; /™, EI7)
m=1

Given enough components, this family of functions can model
any distribution.

@ Train using the EM algorithm, in which the component
estimation probabilities are estimated in the E-step

EM training of HMM/GMM

@ Rather than estimating the state-time alignment, we estimate
the component/state-time alignment, and component-state
occupation probabilities v¢(sj, m): the probability of
occupying mixture component m of state s; at time t

@ We can thus re-estimate the mean of mixture component m
of state s; as follows

rJm ZtT:1 71.“(51'7 m)Xt
Zz—:l ’Yt(sjv m)
And likewise for the covariance matrices (mixture models
often use diagonal covariance matrices)
@ The mixture coefficients are re-estimated in a similar way to
transition probabilities:

T
N . Zt:l ryt(sj7 m)

Cim =
Jm M T
Ee:l Zt:1 Vt(sjaé)

Doing the computation Summary: HMMs

@ The forward, backward and Viterbi recursions result in a long
sequence of probabilities being multiplied

@ This can cause floating point underflow problems

@ In practice computations are performed in the log domain (in
which multiplies become adds)

@ Working in the log domain also avoids needing to perform the
exponentiation when computing Gaussians

ASR Lectures 4&5

@ HMMs provide a generative model for statistical speech
recognition
@ Three key problems
@ Computing the overall likelihood: the Forward algorithm
@ Decoding the most likely state sequence: the Viterbi algorithm
© Estimating the most likely parameters: the EM
(Forward-Backward) algorithm
@ Solutions to these problems are tractable due to the two key
HMM assumptions
@ Conditional independence of observations given the current

state
@ Markov assumption on the states

ASR Lectures 4&5 75

References: HMMs

e Gales and Young (2007). "“The Application of Hidden Markov
Models in Speech Recognition”, Foundations and Trends in
Signal Processing, 1 (3), 195-304: section 2.2.

e Jurafsky and Martin (2008). Speech and Language Processing
(2nd ed.): sections 6.1-6.5; 9.2; 9.4. (Errata at
http://www.cs.colorado.edu/~martin/SLP/Errata/
SLP2-PIEV-Errata.html)

@ Rabiner and Juang (1989). “An introduction to hidden
Markov models”, IEEE ASSP Magazine, 3 (1), 4-16.

@ Renals and Hain (2010). “Speech Recognition”,

Computational Linguistics and Natural Language Processing
Handbook, Clark, Fox and Lappin (eds.), Blackwells.

ASR Lectures 4&5 76

