Overview

Speech Signal Analysis for ASR

Speech Signal Analysis o Features for ASR

@ Spectral analysis
Hiroshi Shimodaira and Steve Renals o Cepstral analysis
@ Standard features for ASR: MFCCs and PLP analysis

@ Dynamic features
Automatic Speech Recognition— ASR Lectures 2&3

17/24 January 2013 Reading:
o Jurafsky & Martin, sec 9.3

o P Taylor, Text-to-Speech Synthesis, chapter 12, signal
processing background chapter 10
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Speech signal analysis for ASR Speech production model
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Sampling Acoustic Features for ASR
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Sampled signal I ,,,,,, I
T I T I _ /T\ Acoustic feature vectors‘ Acoustic
x(n) \ Front End / Ot(k) Model

Speech signal analysis to produce a sequence of acoustic feature
vectors
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Acoustic Features for ASR MFCC-based front end for ASR

Desirable characteristics of acoustic features used for ASR:

@ Features should contain sufficient information to distinguish
between phones

e good time resolution (10ms)
e good frequency resolution (~ 20 channels)

Be separated from Fy and its harmonics
Be robust against speaker variation

Be robust agains noise or channel distortions

Have good “pattern recognition characteristics”

o low feature dimension
o features are independent of each other
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Pre-emphasis and spectral tilt Pre-emphasis: example

o The speech signal has more energy at low frequencies (for A .
voiced speech) o] AR A TaTae o]
e This is due to the glottal source

204 204y
@ Pre-emphasis increases the magnitude of higher frequencies in s s ‘
the speech signal compared with lower frequencies : o oo
2 A 2 | |
e Spectral Tilt i il i 1
E 204 i 5 -204
: H

Frequency (Hz) Frequency (Hz)

@ Pre-emphasis (first-order) filter boosts higher frequencies:

, Vowel /aa/ - time slice of the spectrum
x[n'] = x[n] + ax[n — 1] 0.95 <a<0.99

(Jurafsky & Martin, fig. 9.9)
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@ The speech signal is constantly changing (non-stationary) —
@ Signal processing algorithms usually assume that they the

signal is stationary . A .

@ Piecewise stationarity: model speech signal as a sequence of e
frames (each assumed to be stationary) Rectangular Hamming Hanning

e Windowing: multiply the full waveform s(n) by a window
w(n) (in time domain):

e e g &

anpltde
o o
@ oo b =
angltde
0000 0O0CO
coshonaon

x[n] = wln]s[n]

@ Simply cutting out a short segment (frame) from s(n) is a
rectangular window — causes discontinuities at the edges of

the segment ]
@ Instead, a tapered window is usually used (
e.g. Hamming (o« = 0.46164) or Hanning (o« = 0.5) window T :
o2l o
w[f] = (1 — a) — acos ( N T 1) N : window width (¢) Hemming window
o (Taylor, fig 12.1)
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Effect of windowing — frequency domain
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Windowing and spectral analysis Wide-band and narrow-band spectrograms

e Window the signal x(n)

into frames x;(n) and apply windowing
Fourier Transform to each TercEia
segment.

e Short frame width:

wide-band, ENgS
high time resolution, :
low frequency resolution
o Long frame width: L
narrow-band, ¢ Discrete —
. . Fourier Transform
low time resolution,
high frequency resolution

e For ASR;

e frame width ~ 20ms
o frame shift ~ 10ms

Intensit,

Frequency
Short-time power spectrum
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Discrete Fourier Transform (DFT)

@ Purpose: extracts spectral information from a windowed
signal (i.e. how much energy at each frequency band)

@ Input: windowed signal x[n]...x[m] (time domain)

@ Output: a complex number X[k] for each of N frequency

bands representing magnitude and phase for the kth frequency

component (frequency domain)
@ Discrete Fourier Transform (DFT):

X[K] = fo[n] exp (—j2l\7/rkn)

n=0

e Fast Fourier Transform (FFT) — efficient algorithm for
computing DFT when N is a power of 2
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‘ Figure 12.9  Narrow band spectrogram  Window width = 25ms

(Taylor, figs 12.8, 12.9)

ASR Lectures 2&3




Short-time spectral analysis DFT Spectrum

windowing
.., shift

Discrete —
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@ Equally-spaced frequency bands — but human hearing less
sensitive at higher frequencies (above ~ 1000Hz)

@ The estimated power spectrum contains harmonics of FO,
which makes it difficult to estimate the envelope of the
spectrum

\ \
12 - Log IX(W)I —— 7

\ \ \ LY
0 50 100 150 200 250

e Frequency bins of STFT are highly correlated each other, i.e.
power spectrum representation is highly redundant
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25ms Hamming window of vowel /iy/ and its spectrum computed
by DFT

(Jurafsky and Martin, fig 9.12)
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Physical quality Perceptual quality

Intensity Loudness

Fundamental frequency Pitch

Spectral shape Timbre

Onset/offset time Timing

Phase difference in binaural hearing Location

Technical terms
@ equal-loudness contours
@ masking
@ auditory filters (critical-band filters)

@ critical bandwidth
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Equal loudness contour Nonlinear frequency scaling
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@ Apply a mel-scale filter bank to DFT power spectrum to
obtain mel-scale power spectrum

@ Each filter collects energy from a number of frequency bands
in the DFT

o Linearly spaced < 1000 Hz, logarithmically spaced > 1000 Hz

DFT(STFT) power spectrum

[]
—» Frequency bins

Triangular band-pass filters ‘

Mel-scale power spectrum
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Human hearing is less sensitive to higher frequencies — thus
human perception of frequency is nonlinear

Bark scale Mel scale

b(f) = 13 arctan(0.00076f) M(f) = 11271In(1 + /700)
+ 3.5arctan((f/7500)?) =

300 -

g

200

Bark frequency [Bark]
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@ Compute the log magnitude squared of each Mel filter bank
output

e Taking the log compresses the dynamic range

o Human sensitivity to signal energy is logarithmic — i.e.
humans are less sensitive to small changes in energy at high
energy than small changes at low energy

o Log makes features less variable to acoustic coupling variations

e Removes phase information — not important for speech
recognition (not everyone agreeswith this)
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DFT Spectrum Features for ASR Cepstral Analysis

o Equally-spaced frequency bands — but human hearing less
sensitive at higher frequencies (above ~ 1000Hz)

@ The estimated power spectrum contains harmonics of FO, Source-Filter model of speech production

which makes it difficult to estimate the envelope of the e Source: Vocal cord vibrations create a glottal source waveform
spectrum o Filter: Source waveform is passed through the vocal tract:
\ \ position of tongue, jaw, etc. give it a particular shape and
12 - Log IX(w)l —— - ) o o r
hence a particular filtering characteristic

12 @ Source characteristics (Fg, dynamics of glottal pulse) do not
help to discriminate between phones
j | | | | @ The filter specifies the position of the articulators
0 50 100 150 200 750 @ ... and hence is directly related to phone discrimination
@ Cepstral analysis enables us to separate source and filter

@ Frequency bins of STFT are highly correlated each other, i.e.
power spectrum representation is highly redundant

Cepstral Analysis The Cepstrum
Split power spectrum into spectral envelope and Fg harmonics. @ Cepstrum obtained by applying inverse DFT to log magnitude

spectrum (may be mel-scaled)

Log IX(w)) ——

Log Spectrum (freq domain
g Spectrum (freq in) @ Cepstrum is time-domain (we talk about quefrency)

| Inverse Fourier Transform
@ Inverse DFT:

L L L L
0 50 100 150 200

)
g
=3

Cepstrum (time domain) (quefrency)

T T
Cepstrum

g 3 . . M

0.4 —

é b velk = > log(|Y(m))) cos (k(m —0.5) 1) K =0,....J
s e R |l Fourier Transform m=1

. “eneoe =0 — 1 Smoothed-spectrum (freq. domain) @ Since log power spectrum is real and symmetric the inverse

: 1 [low-part of cepstrum] DFT is equivalent to a discrete cosine transform
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MFCCs PLP — Perceptual Linear Prediction

@ Smoothed spectrum: transform to cepstral domain, truncate, @ PLP (Hermansky, JASA 1990)
transform back to spectral domain @ Uses equal loudness
e Mel-frequency cepstral coefficients (MFCCs): use the cepstral SPEECH pre-emphasis and cube-root
coefficients directly Fouri compression (motivated by
ourier
o Widely used as acoustic features in HMM-based ASR Transform perceptual re_sults) rather than
o First 12 MFCCs are often used as the feature vector (removes Magnitude log compression
. . quare ! . L

FO information) ] Critical_Band ' ' @ Uses linear predictive
o Less correlated than spectral features — easier to model than Irﬁttlggrétigr? /YY\/X\ auto-regressive modelling to

spectral features _ _ : \ obtain cepstral coefficients
e Very compact representation — 12 features describe a 20ms Equal Loudness ! !

frame of data reemphasis . @ PLP has been shown to lead to
e For standard HMM-based systems, MFCCs result in better 'EL%%SAZJS I

ASR performance than filter bank or spectrogram features COESZ‘:'O” o slightly better ASR
o MFCCs are not robust against noise Fourier accuracy

Transform . .
) o o slightly better noise
Linear Prediction
robustness
PLP compared with MFCCs
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Dynamic features Estimating dynamic features

@ Speech is not constant frame-to-frame, so we can add features
to do with how the cepstral coefficients change over time

e Ax, A%x are delta features (dynamic features / time
derivatives)

c(t)

Simple calculation of delta features d(t) at time t for cepstral

feature c(t):
t 2 c(t+1) —c(t—1)

d(t) =
() > :
@ More sophisticated approach estimates the temporal derivative !
by using regression to estimate the slope (typically using 4 to time

frames each side)
@ “Standard” ASR features are 39 dimensions:

e 12 MFCCs, and energy
e 12 A MFCGCs, A energy
e 12 A2 MFCCs, A? energy
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@ Orthogonal transformation (orthogonal bases) @ Good characteristics of ASR features
o DCT (discrete cosine transform) @ MFCCs - mel frequency cepstral coefficients
o PCA (principal component analysis) o Short-time DFT analysis
@ Transformation based on the bases that maximises the o Mel filter bank
separability between classes. o Log magnitude squared
o Inverse DFT (DCT)
Use first few (12) coefficients

o LDA (linear discriminant analysis) / Fisher's linear discrminant
o HLDA (heteroscedastic linear discriminant analysis)

@ Delta features

@ 39-dimension feature vector:
MFCC-12 + energy; + Deltas; + Delta-Deltas
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