Automatic Speech Recognition handout (1)

Jan - Mar 2012 Revision: 1.1

Speech Signal Processing and Feature Extraction

Hiroshi Shimodaira (h.shimodaira@ed.ac.uk)

Speech Communication

Waveform

Spectrogram

Cross-section of spectrogram

Speech Production Model

Time domain:
$$x(t) = h(t) * v(t) = \int_0^\infty h(\tau) v(t-\tau) d\tau$$

 \downarrow Fourier transform

Frequency domain: $X(\Omega)=H(\Omega)V(\Omega)$ Ω : angular frequency (= $2\pi F$)

frequency

Automatic Speech Recognition

Find the word sequence W such that $\max_{W} P(W|X) = \max_{W} \frac{P(X|W)P(W)}{P(X)}$

(after Sagayama, "Speech Translation Telephony",1994)

Signal Analysis for ASR

Front-end analysis

Convert acoustic signal into a sequence of feature vectors e.g. MFCCs, PLP cepstral coefficients

Feature parameters for ASR

Features should

- contain sufficient information to distinguish phonemes / phones
 - good time-resolutions [e.g. 10ms]
 - good frequency-resolutions [e.g. 20 channels/Bark-scale]
- $lue{}$ not contain (or be separated from) F_0 and its harmonics
- be robust against speaker variation
- **be robust against noise / channel distortions**
- have good characteristics in terms of pattern recognition
 - **■** The number of features is as few as possible
 - **■** Features are independent of each other

Converting analogue signals to machine readable form

- Discretisation (sampling) $x_c(t) \rightarrow x[n]$
 - \blacksquare continuous time \Rightarrow discrete time
 - **■** continuous amplitude ⇒discrete amplitude

Problem: information can be lost by sampling

Sampling of continuous-time signals

- **Continuous-time signal:** $x_c(t)$
- Modulated signal by a periodic impulse train:

$$x_s(t) = x_c(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \sum_{n=-\infty}^{\infty} x_c(nT_s)\delta(t - nT_s)$$

Sampled signal: $x[n] = x_s(nT_s)$ ··· discrete-time signal

 T_s : Sampling interval

Sampling of continuous-time signals(cont. 2)

O: Is the C/D conversion invertible?

$$x_c(t) \stackrel{C/D}{\longrightarrow} x[n] \stackrel{D/C}{\longrightarrow} x_c(t)$$
?

Sampling of continuous-time signals(cont. 3)

Q: Is the C/D conversion invertible?

$$x_c(t) \stackrel{C/D}{\longrightarrow} x[n] \stackrel{D/C}{\longrightarrow} x_c(t)$$
?

A: "No" in general, but

"Yes" under a special condition:

"Nyquist sampling theorem"

If $x_c(t)$ is band-limited (i.e. no frequency components $> F_s/2$), then $x_c(t)$ can be fully reconstructed by x[n].

$$x_{c}(t) = h_{T_{s}}(t) * \sum_{k=-\infty}^{\infty} x[k]\delta(t - kT_{s}) = \sum_{k=-\infty}^{\infty} x[k]h_{T_{s}}(t - kT_{s})$$
$$h_{T_{s}}(t) = \operatorname{sinc}(t/T_{s}) = \frac{\sin(\pi t/T_{s})}{\pi t/T_{s}}$$

 $F_s/2$: Nyquist Frequency, $F_s = 1/T_s$: Sampling Frequency

Sampling of continuous-time signals(cont. 4)

Interpretation in frequency domain:

Sampling of continuous-time signals(cont. 5)

Questions

- 1. What sampling frequencies (F_s) are used for ASR ?
 - **microphone voice:** $12kHz \sim 20kHz$
 - **telephone voice:** $\sim 8kHz$
- 2. What are the advantages / disadvantages of using higher F_s ?
- 3. Why is pre-emphasis (+6dB/oct.) employed?

$$x[n] = x_0[n] - ax_0[n-1], \quad a = 0.95 \sim 0.97$$

Spectral analysis: Fourier Transform

■ FT for continuous-time signals (& continuous-frequency)

$$X_c(\Omega) = \int_{-\infty}^{\infty} x_c(t) e^{-j\Omega t} dt$$
 (time domain o freq. domain) $x_c(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} X_c(\Omega) e^{j\Omega t} d\Omega$ (freq. domain o time domain)

■ FT for discrete-time signals (& continuous-frequency)

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$$

$$|X(e^{j\omega})|^2 \quad \cdots \quad \text{Power spectrum}$$

$$\log |X(e^{j\omega})|^2 \quad \cdots \quad \text{Log power spectrum}$$
where $\omega = T_s\Omega = 2\pi f$,
$$e^{-j\omega n} = \cos(\omega n) + j\sin(\omega n), \quad j: \text{ the imaginary unit}$$

An interpretation of FT

Inner product between two vectors (Linear Algebra)

2-dimensional case

$$\mathbf{a} = (a_1, a_2)^t$$

$$\mathbf{b} = (b_1, b_2)^t$$

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^t \mathbf{b} = a_1 b_1 + a_2 b_2$$

$$= \parallel \mathbf{a} \parallel \parallel \mathbf{b} \parallel \cos \theta$$

■ Infinite-dimensional case

$$\mathbf{x} \triangleq \{x[n]\}_{-\infty}^{\infty}$$

$$\mathbf{e}_{\omega} \triangleq \{\mathbf{e}^{j\omega n}\}_{-\infty}^{\infty} = \{\cos(\omega n) + j\sin(\omega n)\}_{-\infty}^{\infty}$$

$$\triangleq \mathbf{cos}_{\omega} + j\mathbf{sin}_{\omega}$$

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} x[n]e^{-j\omega n} = \mathbf{x} \cdot \mathbf{e}^{j\omega n} = \mathbf{x} \cdot \mathbf{cos}_{\omega} + j\mathbf{x} \cdot \mathbf{sin}_{\omega}$$

 $m{x}\cdot \mathbf{cos}_{\omega}$: proportion of how much \mathbf{cos}_{ω} component is contained in $m{x}$

Short-time Spectrum Analysis

Problem with FT

- Assuming signals are stationary: signal properties do not change over time
- **■** If signals are non-stationary
 - \Rightarrow loses information on time varying features
- ⇒ Short-time Fourier transform (STFT) (Time-dependent Fourier transform)

Divide the signal x[n] into short-time segments (frames) $x_k[m]$ and apply FT to each segment.

$$x[n]$$
 $x_1[m]$, $x_2[m]$, ..., $x_k[m]$, ...
 \downarrow \downarrow \downarrow \downarrow \downarrow
 $X(\omega)$ $X_1(\omega)$, $X_2(\omega)$, ..., $X_k(\omega)$, ...

Short-time Spectrum Analysis(cont. 2)

Short-time Spectrum Analysis(cont. 3)

■ Trade-off problem of short time spectrum analysis

	window width	
	$\mathbf{short} \to \mathbf{long}$	
frequency resolution	7	
time resolution		

 \Rightarrow a compromise for ASR:

window width (frame width): $20 \sim 30 \text{ ms}$

window shift (frame shift): $5 \sim 15 \text{ ms}$

The Effect of Windowing in STFT

Time domain:

$$y_k[n] = w_k[n]x[n], \quad w_k[n]$$
: time-window for k-th frame

Simply cutting out a short segment (frame) from x[n] implies applying a rectangular window on to x[n].

 \Rightarrow causes discontinuities at the edges of the segment.

Instead, a tapered window is usually used.. e.g. Hamming ($\alpha = 0.46164$) or Hanning ($\alpha = 0.5$) window)

$$w[\ell] = (1-\alpha) - \alpha \cos\left(\frac{2\pi\ell}{N-1}\right) \qquad N : \text{window width}$$
 rectangle Hamming Hanning Blackman Bartlett

The Effect of Windowing in STFT(cont. 2)

Frequency domain:

$$Y_k(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W_k(e^{j\theta}) X(e^{j(\omega-\theta)}) d\theta \quad \cdots \quad \text{Periodic convolution}$$

- Power spectrum of the frame is given as a periodic convolution between the power spectra of x[n] and $w_k[n]$.
- If we want $Y_k(e^{j\omega})=X(e^{j\omega})$, the necessary and sufficient condition for this is $W_k(e^{j\omega})=\delta(\omega)$, i.e. $w_k[n]=\mathcal{F}^{-1}\delta(\omega)=1$, which means the length of $w_k[n]$ is infinite. \Rightarrow there is no window function of finite length that causes no

 \Rightarrow there is no window function of finite length that causes no distortion.

NB: hereafter x[n] will be also used to denote a segmented signal for simplicity.

The Effect of Windowing in STFT(cont. 3)

Spectral analysis of two sine signals of close frequencies

Problems with STFT

- The estimated power spectrum contains harmonics of F_0 , which makes it difficult to estimate the envelope of the spectrum.
- Frequency bins of STFT are highly correlated each other, i.e. power spectrum representation is highly redundant.

Cepstrum Analysis

Idea: split(deconvolve) the power spectrum into spectrum envelope and F_0 harmonics.

Log-spectrum [freq. domain]

↓ Inverse Fourier Transform

Cepstrum [time domain] (quefrency)

- Liftering to get low/high part (lifter: filter used in cepstral domain)
- **↓** Fourier Transform

Smoothed-spectrum [freq. domain] (low-part of cepstrum)

Log-spectrum of high-part of cepstrum

Cepstrum Analysis (cont. 2)

$$x[n] = h[n] * v[n] \qquad \qquad \begin{array}{c} h[n] \colon \text{ vocal tract} \\ v[n] \colon \text{ glottal sounds} \end{array}$$

$$\downarrow \mathcal{F} \quad \text{(Fourier transform)}$$

$$X(e^{j\omega}) = H(e^{j\omega})V(e^{j\omega})$$

$$\log |x(e^{j\omega})| = \underbrace{\log |H(e^{j\omega})|}_{\text{(spectral envelope)}} + \underbrace{\log |V(e^{j\omega})|}_{\text{(spectral fine structure)}}$$

$$\downarrow \mathcal{F}^{-1}$$

$$c(\tau) = \mathcal{F}^{-1} \left\{ \log |X(e^{j\omega})| \right\}$$

$$= \mathcal{F}^{-1} \left\{ \log |H(e^{j\omega})| \right\} + \mathcal{F}^{-1} \left\{ \log |V(e^{j\omega})| \right\}$$

LPC Analysis

Linear Predictive Coding (LPC):

a model-based / parametric spectrum estimation

Assume a "linear system" for human speech production

sound source
$$v[n] \Rightarrow \boxed{\text{vocal tract}} \Rightarrow \text{speech } x[n]$$

$$v[n] \longrightarrow \boxed{h[n]} \longrightarrow x[n] \qquad h[n]: \text{ impulse response}$$

$$x[n] = h[n] * v[n] = \sum_{k=0}^{\infty} h[k] \, v[n-k]$$

Using a model enables us to

- estimate a spectrum of vocal tract from small amount of observations
- represent the spectrum with a small number of parameters

synthesise speech with the parameters

LPC Analysis(cont. 2)

Predict x[n] from $x[n-1], x[n-2], \cdots$

$$\hat{x}[n] = \sum_{k=1}^N a_k x[n-k]$$
 $e[n] = x[n] - \hat{x}[n] = x[n] - \sum_{k=1}^N a_k x[n-k]$ \cdots prediction error

Optimisation problem

Find $\{a_k\}$ that minimises the mean square (MS) error:

$$P_e = E\left\{e^2[n]\right\} = E\left\{\left(x[n] - \sum_{k=1}^{N} a_k x[n-k]\right)^2\right\}$$

 $\{a_k\}$: LPC coefficients

Spectrums estimated by FT & LPC

LPC summary

- $lue{}$ Spectrum can be modelled/coded with around 14LPCs.
- **LPC family**
 - **PARCOR (Partial Auto-Correlation Coefficient)**
 - LSP (Line Spectral Pairs) / LSF (Line Spectrum Frequencies)
 - **CSM (Composite Sinusoidal Model)**
- LPC can be used to predict log-area ratio coefficients lossless tube model
- **LPC-(Mel)Cepstrum: LPC based cepstrum.**
- Drawback:
 - LPC assumes AR model which does not suit to model nasal sounds that have zeros in spectrum.

lacktriangle Difficult to determine the prediction order N.

Taking into Perceptual Attributes

Physical quality	Perceptual quality
Intensity	Loudness
Fundamental frequency	Pitch
Spectral shape	Timbre
Onset/offset time	Timing
Phase difference in binaural hearing	Location

Technical terms

- **equal-loudness contours**
- masking
- auditory filters (critical-band filters)
- critical bandwidth

Taking into Perceptual Attributes (cont. 2)

Taking into Perceptual Attributes (cont. 3)

Non-linear frequency scale

Bark scale

$$b(f) = 13\arctan(0.00076f) + 3.5\arctan((f/7500)^2)$$
 [Bark]

Mel scale

$$B(f) = 1127 \ln(1 + f/700)$$

Filter Bank Analysis

$$x_i[n] = h_i[n] * x[n] = \sum_{k=0}^{M_i-1} h_i[k]x[n-k]$$

 $h_i[n]$: Impulse response of Bandpass filter i

Filter Bank Analysis(cont. 2)

Trade-off problem

Freq. resolution	# of filters	length of filter	Time resolution
	7	7	\
	\	\	7

Filter Bank Analysis (cont. 3)

Another implementation of filter banks: apply a mel-scale filter bank to STFT power spectrum to obtain mel-scale power spectrum

MFCC: Mel-frequency Cepstral Coefficients c[n]

$$x[n] \xrightarrow{\mathbf{DFT}} X[k] \to |X[k]|^2 \xrightarrow{\mathbf{filterbank}} \log |S[m]| \xrightarrow{\mathbf{DCT}} c[n]$$

$$\mathbf{DCT:} \quad c[n] = \sqrt{\frac{2}{N}} \sum_{i=1}^{N} s[i] \cos \left(\frac{\pi n(i-0.5)}{N}\right), \quad \text{where } s[i] = \log |S[i]|$$

DFT: discrete Fourier transform, DCT: discrete cosine transform

- MFCCs are widely used in HMM-based ASR systems.
- The first 12 MFCCs ($c[1] \sim c[12]$) are generally used.

- MFCCs are less correlated each other than DCT/Filter-bank based spectrum.
- **■** Good compression rate.

Feature	dimensionality / frame
Speech wave	400
DCT Spectrum	$64 \sim 256$
Filter-bank	$10 \sim 20$
MFCC	12

where $F_s = 16kHz$, frame-width = 25ms, frame-shift = 10ms are assumed.

■ MFCCs show better ASR performance than filter-bank features, but MFCCs are not robust against noises.

Perceptually-based Linear Prediction (PLP)

[Hermansky, 1985,1990]

PLP had been shown experimentally to be

- more noise robust
- more speaker independent

than MFCCs

Other features with low dimensionality

■ Formants (F_1, F_2, F_3, \cdots)

They are not used in modern ASR systems, but why?

Using temporal features: dynamic features

In SP lab-sessions on speech recognition using HTK,

- MFCCs, and energy
- lacktriangle Δ MFCCs, Δ energy
- \triangle \triangle MFCCs, \triangle energy

$$\Rightarrow \Delta *, \Delta^2 *$$
: delta features (dynamic features / time derivatives) [Furui, 1986]

continuous time	discrete time	
c(t)	c[n]	
$c'(t) = \frac{dc(t)}{dt}$	$\Delta c[n] egin{array}{c c} \sum_{i=-M}^M w_i c[n+i] & ext{e.g. } \Delta c[n] = rac{c[n+1]-c}{2} \end{array}$	$\frac{-c[n-1]}{2}$
$c''(t) = \frac{d^2c(t)}{dt^2}$	$\Delta^2 c[n] \left \sum_{i=-M}^{M} w_i \Delta c[n+i] \right $	

Using temporal features: dynamic features (cont. 2)

Using temporal features: dynamic features_(cont. 3)

- An acoustic feature vector, eg MFCCs, representing part of a speech signal is highly correlated with its neighbours.
- HMM based acoustic models assume there is no dependency between the observations.
- Those correlations can be captured to some extent by augmenting the original set of static acoustic features, eg. MFCCs, with dynamic features.

General Feature Transformation

- Orthogonal transformation (orthogonal bases)
 - **DCT** (discrete cosine transform)
 - **PCA** (principal component analysis)
- Transformation based on the bases that maximises the separability between classes.
 - LDA (linear discriminant analysis) / Fisher's linear discriminant
 - **HLDA** (heteroscedastic linear discriminant analysis)

A comparison of speech features

I. Mporas, et al., "Comparison of Speech Features on the Speech Recognition Task", Journal of Computer Science, Vol.3, pp.608–616, 2007.

Feature	WER(%)	SER(%)
SBC (16)	6.2	21.3
WPSR125 (16)	6.3	21.8
OWPF (16)	6.4	22.1
LFCC-FB40	6.9	23.5
HFCC-FB23	8.2	27.3
HFCC-FB40	8.7	28.2
PLP-FB19	9.0	29.4
MFCC-FB40	9.0	29.9

SBC	Subband-based Cepstral Coefficients
WPSR	Wavelet packet features
OWPF	Overlapping wavelet packet features
WPSR	Wavelet packet-based speech features
LFCC-FB	Linear-spaced filter-bank based cepstral coefficients
HFCC-FB	Human factor censtral coefficients

NB The above result was obtained for TIMIT speech corpus. Results might change a lot under different conditions (e.g. noise, tasks, ASR systems)

Further topics on feature extraction

- **■** Feature normalisation/enhancement in terms of
 - noise / environments
 - speakers / speaking styles
 - **■** speech recognition
- Pitch (F_0) adapted feature extraction

SUMMARY

- Nyquist Sampling theory
- **Short-time Spectrum Analysis**
 - **■** Non-parametric method
 - Short-time Fourier Transform
 - Cepstrum, MFCC
 - Filter bank
 - **■** Parametric methods
 - LPC, PLP
 - Windowing effect: trade-off between time and frequency resolutions
- Dynamic features (delta features)
- There is no best feature that can be used for any purposes, but MFCC is widely used for ASR and TTS.

SUMMARY(cont. 2)

- **■** Front-end analysis has a great influence on ASR performance.
- For robust ASR in real environments, various techniques for front-end processing have been proposed. e.g. spectral subtraction (SS), cepstral mean normalisation (CMN)
- Spectrum analysis and feature extraction involve information loss and non-linear distortions. There is always a tradeoff between accuracy and efficiency. (e.g. spatial resolution vs. temporal resolution)

References

- John N. Holmes, Wendy J. Holmes, "Speech Synthesis and Recognition", Taylor and Francis (2001), 2nd edition (chapter 2, 4, 10)
- http://mi.eng.cam.ac.uk/comp.speech/
- http://mi.eng.cam.ac.uk/~ajr/SpeechAnalysis/
- http://cslu.cse.ogi.edu/HLTsurvey/
- B. Gold, N. Morgan, "Speech and Audio Signal Processing: Processing and Perception of Speech and Music", John Wiley and Sons (1999).
- "Spoken language processing: a guide to theory, algorithm, and system development", Xuedong Huang, Alex Acero and Hsiao-Wuen Hon, Prentice Hall (2001). isbn: 0130226165

References(cont. 2)

- "Robusness in Automatic Speech Recognition", J-C Junqua and J-P Hanton, , Kluwer Academic Publications (1996). isbn: 0-7923-9646-4
- **"A Comparative Study of Traditional and Newly Proposed Features for Recognition of Speech Under Stress"**, Sahar Bou-Ghazale and John H.L. Hansen, IEEE Trans SAP, vol. 8, no. 4, pp.429–442, July 2000.