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Speech Production Model
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Automatic Speech Recognition
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(after Sagayama, "Speech Translation Telephony",1994)
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Signal Analysis for ASR

Front-end analysis
Convert acoustic signal into a sequence of feature vectors

e.g. MFCCs, PLP cepstral coefficients

AID Pre— | XNl [spectral analysi
X(t) —=| LPF |+ conversion —|emphasis eature extractio Cn [K]

(low—-pass filter) f A m: frame number
! . k: feature index
Sampling frequency Analysis window
Fg Frame-shift
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Feature parameters for ASR

Features should

m contain sufficient information to distinguish phonemes /
phones

m good time-resolutions [e.g. 10ms]
m good frequency-resolutions [e.g. 20 channels/Bark-scale]

H not contain (or be separated from) F{, and its harmonics
m be robust against speaker variation

m be robust against noise / channel distortions

m have good characteristics in terms of pattern recognition

m The number of features is as few as possible
m Features are independent of each other
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Converting analogue signals to machine
readable form

m Discretisation (sampling) z.(t) — x[n]
m continuous time = discrete time

m continuous amplitude =-discrete amplitude

Problem: information can be lost by sampling
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Sampling of continuous-time s:qnals

sty _tAt D

Conversion from
Xc(t) ; /><\ impulse train to ——= X[n]
. : (t) discrete—time sequence |
‘ X d :

m Continuous-time signal: z.(¢)

m Modulated signal by a periodic impulse train:

o0

Ts(t) = z.(t Z o(t Z z.(nTy)o(t — nTy)

m Sampled signal: x[n] = z,(nTs) --- discrete-time signal

Ts : Sampling interval
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Sampling of continuous-time signalsicon. )

Q: Is the C/D conversion invertible ?

vot) L2 ) 28 )2
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Sampling of continuous-time signalsicon.

Q: Is the C/D conversion invertible ?

vot) L2 ) 28 )2
A: “No” in general, but
“Yes” under a special condition:
“Nyquist sampling theorem”

If x.(t) is band-limited (i.e. no frequency components > F;/2),
then z.(¢) can be fully reconstructed by z[n|.

ze(t) = hr,(t)+ > wlk]6(t —kT,) = Y alklhe, (t — KT)
k=—00 ke —oo0
hr(t) = sinc(t/Ts) = Sing/tgs)

F,/2 : Nyquist Frequency, F; = 1/T;: Sampling Frequency
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Sampling of continuous-time signalsico.

Interpretation in frequency domain:

KC“”' X,(Q) = _E_;oo Xc(Q — k)
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Sampling of continuous-time signalsicon. s

AID Pre— | X[N] (spectral analysi
X(t) —=| LPF |+ conversion _|emphasis eature extractio Cu [K]

(low-pass filter) f A m: frame number
. o k: feature index
Sampling frequency Analysis window
Fg Frame-shift
Questions

1. What sampling frequencies (£;) are used for ASR ?
B microphone voice: 12kHz ~ 20kH z
m telephone voice: ~ SkHz

2. What are the advantages / disadvantages of using higher
Fs?
3. Why is pre-emphasis (+6dB/oct.) employed?
zn] = xoln| — azxgln — 1], a=0.95~0.97
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Spectral analysis: Fourier Transform

m FT for continuous-time signals (& continuous-frequency)
X C(Q) = / b xr c(t) e_j ot dt (time domain — freq. domain)

i C(t) = % /_ X C(Q)Gj QtdQ (freq. domain — time domain)

m FT for discrete-time signals (& continuous-frequency)

X(e¥) = f: z[n]e 7"

n=-—oo

x[n] = % X (7)) dw
| X(e’¥)]* --- Power spectrum
log | X (e’¥)]? --- Log power spectrum

where w =T,Q) =27f,
e /" = cos(wn) + jsin(wn), j: the imaginary unit
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An interpretation of FT

Inner product between two vectors (Linear Algebra)
m 2-dimensional case

a = (ay,as)

b= (b, by)!

a-b=a'b=ab; + aby
=[[a ||| b cost

. . . |f b||=1
m Infinite-dimensional case ” =

I|a|I0089
z = {z[n]}>,

A Jwn |
w = {6 }—oo

{cos(wn) + jsin(wn)}>
cos,, + jsin,

> |l

o0

X(e¥) =Y z[nle " =x - " = x - cos, + jx - sin,

n=—oo

& - COS,, : proportion of how much cos, component is contained in x
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Short-time Spectrum Analysis

Problem with FT

B Assuming signals are stationary:

signal properties do not change over time
m If signals are non-stationary

= loses information on time varying features

= Short-time Fourier transform (STFT)
(Time-dependent Fourier transform)
U
Divide the signal z[n] into short-time segments (frames) z;[m]
and apply FT to each segment.

x[n] | z1[m], xo[m], ..., xz[m],
! | ! !
X(w) Xi(w), Xo(w), ..., Xp(w), ...
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Short-time Spectrum Analysis....»

windowing
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Short-time Spectrum Analysis... s

B Trade-off problem of short time spectrum analysis

window width
short — long
frequency resolution /
time resolution AN

= a compromise for ASR:

window width (frame width): 20 ~ 30 ms
window shift (frame shift): 5~ 15 ms
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The Effect of Windowing in STFT

Time domain:

yrIn] = wi[n]x[n], wi[n] : time-window for k-th frame

Simply cutting out a short segment (frame) from z[n] implies
applying a rectangular window on to z[n|.

= causes discontinuities at the edges of the segment.
Instead, a tapered window is usually used.. e.g. Hamming (o =
0.46164) or Hanning (o = 0.5) window)

27l
’U)[g] = (1 — CY) — (X COS <N7T_ 1) N : window width

rectangle Hamming Hanning Blackman Bartlett
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The Effect of Windowing in STFT....»

Frequency domain:

: 1 T . .
Yk(ej w) = / Wk(ej 9)X (e] (w=0) )d@ * + + Periodic convolution

T or

m Power spectrum of the frame is given as a periodic convolu-
tion between the power spectra of z|n| and wy[n|.

m If we want Y,.(e/¥) = X(¢’¥), the necessary and sufficient
condition for this is W,.(e/*) = §(w),
i.e. wi[n| = F16(w) = 1, which means the length of w;[n] is
infinite.
= there is no window function of finite length that causes no
distortion.

NB: hereafter [n| will be also used to denote a segmented signal for simplicity.
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The Effect of Windowing in STFT.... s

Spectral analysis of two sine signals of close frequencies
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Problems with STFT

B The estimated power spectrum contains harmonics of F{,
which makes it difficult to estimate the envelope of the spec-
trum.

m Frequency bins of STFT are highly correlated each other, i.e.
power spectrum representation is highly redundant.

Log [X(w)] ——

\ \ \ \
0 50 100 150 200 250
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Cepstrum Analysis

Idea: split(deconvolve) the power spectrum into spectrum envelope and F; harmonics.
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Residue

Log-spectrum [freq. domain]

|l Inverse Fourier Transform
Cepstrum [time domain] (quefrency)

| Liftering to get low/high part

(lifter: filter used in cepstral domain)
|| Fourier Transform
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(low-part of cepstrum)

Log-spectrum of high-part of cepstrum



Cepstrum Analysis.o. -

hin]:  vocal tract

x[n] =h [n] * U[n] v[n]: glottal sounds

| F (Fourier transform)

X(e¥) = H(e/)V (el¥)

Log spectrum l log
log | X (e/)] = log|H(e™)] +  log|V(e™)|
(spectral envelope) (spectral fine structure)
Cepstrum l F -1

e(7) = F~H {log | X(e7)[}
— F 1 {log |[H(e7)|} + F1 {log |V (e/)|}
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LPC Analysis

Linear Predictive Coding (LPC):
a model-based / parametric spectrum estimation

Assume a “linear system” for human speech production

sound source v[n] = |vocal tract| = speech x[n]

vin] — hn] — z[n] hn] : impulse response
x[n] = hin] x vn| = i hlk

Using a model enables us to
B estimate a spectrum of vocal tract from small amount of ob-

servations
B represent the spectrum with a small number of parameters
m synthesise speech with the parameters
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LPC AnaIySiS(cont. 2)

Predict z[n| from zn — 1], x[n — 2], - - -

z[n] = zlif: arzn — k|

N
eln] = x[n] — 2[n] = x[n] =) apx[n — k| - - prediction error
k=1

~ Optimisation problem ~
Find {a;} that minimises the mean square (MS) error:

P.=E{e’n]} =FE (m[n] — Ezj: apx[n — k])

N J
{ar} : LPC coefficients
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Spectrums estimated by FT & LPC

magnitute (dB)
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LPC summary

m Spectrum can be modelled/coded with around 14L PC's.
m LPC family

m PARCOR (Partial Auto-Correlation Coefficient)
m LSP (Line Spectral Pairs) / LSF (Line Spectrum Fre-

quencies)
m CSM (Composite Sinusoidal Model)

B LPC can be used to predict log-area ratio coefficients loss-
less tube model

m LPC-(Mel)Cepstrum: LPC based cepstrum.
m Drawback:

m LPC assumes AR model which does not suit to model

nasal sounds that have zeros in spectrum.
m Difficult to determine the prediction order N.
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Taking into Perceptual Attributes

Physical quality Perceptual quality
Intensity Loudness
Fundamental frequency Pitch
Spectral shape Timbre
Onset/offset time Timing
Phase difference in binaural hearing Location

Technical terms
m equal-loudness contours
m masking
m auditory filters (critical-band filters)
m critical bandwidth
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Taking into Perceptual Attributes.... >
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Taking into Perceptual Attributes.... ;

Non-linear frequency scale

m Bark scale
b(f) = 13 arctan(0.00076 f) 4 3.5 arctan(( f/7500)?)  [Bark]

m Mel scale

B(f)=1127In(1+ f/700)

1.0

08

0.6 [

04

Bark frequency [Bark]

02

warped normalized frequency

0

Il Il Il Il Il Il
Il Il Il Il Il Il
0 2000 4000 6000 8000 10000 12000 14000 0 2000 2000 6000 8000 10000 12000

linear frequency [Hz] linear frequency [Hz]
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Filter Bank Analysis

Speech

x[n]

_»

Bandpass
Filter 1

— xl[n]

Bandpass
Filter K

—>xK[n]

SO\,

M;—1

perceptual scale

zi[n] = hiln] x x[n] = Y hik]zn — K]

k=0

hi[n|: Impulse response of Bandpass filter :
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Filter Bank Analysisi.o. -

Bandpass . L Lowpass Down
> : > Nonlinearit > : — ; =
Filter 1 [ rnj y vi[n] Filter |y ryj | Sampling
Speech . . . '
—_— '
X[n] ° E ° °
_ | Bandpass o . . | Lowpass - Down
Filter K [ [n] Nonlinearity wnl Filter {t[n]|__Sampling

Trade-off problem

Freq. resolution # of filters|length of filter Time resolution
/ / / N\
N\ N\ N\ /
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Filter Bank Analysis.o. s

Another implementation of filter banks:
apply a mel-scale filter bank to STFT power spectrum to
obtain mel-scale power spectrum

DFT(STFT) power spectrum

‘ — Frequency bins

Triangular band-pass filters

i / ’ , s - PR

| ' s L. PP

| h o P L
s PP L PP A Rty

Mel-scale power spectrum
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MFCC

MFCC: Mel-frequency Cepstral Coefficients c|n|

Mel-frequency

DFT filterbank DCT
zln] = X[k — |X[EP —  log|S[m]| = c[n]

DCT: c[n]\/%;]v;s[i] cos <w> where s[i] = log | S[i]

DFT: discrete Fourier transform, DCT: discrete cosine transform

m MFCCs are widely used in HMM-based ASR systems.
m The first 12 MFCCs (c[1] ~ ¢[12]) are generally used.

ASR (H. Shimodaira) 1:34



M F CC( cont. 2)

m MFCCs are less correlated each other than DCT/Filter-bank
based spectrum.

m Good compression rate.

Feature dimensionality / frame
Speech wave 400

DCT Spectrum 64 ~ 256
Filter-bank 10 ~ 20
MFCC 12

where F;, = 16k H z, frame-width = 25ms, frame-shift = 10ms
are assumed.

m MFCCs show better ASR performance than filter-bank fea-
tures, but MFCCs are not robust against noises.
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Perceptually-based Linear Prediction (PLP)

Fourier
Transform

Magnitude

Squared

Critical-Band
Integration

Equal Loudness
reemphasis

Intensity to

Loudness

Compression

Inverse
Fourier
Transform

Linear Prediction
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[Hermansky, 1985,1990]

PLP had been shown experimentally
to be

B more noise robust

® more speaker independent

than MFCCs



Other features with low dimensionality

m Formants (F}, F), F3,---)

They are not used in modern ASR systems, but why ?
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Using temporal features: dynamic features

In SP lab-sessions on speech recognition using HTK,

m MFCCs, and energy
m A MFCCs, A energy

m A? MFCCs, A? energy

= Ax, A% :

delta features

(dynamic features / time derivatives) [Furui, 1986]

continuous time

discrete time

cln]

1=

i w; Acln + 1]

cn+1] = ¢[n — 1]

Z w; C[n + Z} e.g. Acln] =

2
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Using temporal features:

dynamic features... -

c(t)
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Using temporal features: dynamic features..... s

time time

m An acoustic feature vector, eg MFCCs, representing part of a speech signal is highly
correlated with its neighbours.

m HMM based acoustic models assume there is no dependency between the observations.

m Those correlations can be captured to some extent by augmenting the original set of
static acoustic features, eg. MFCCs, with dynamic features.
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General Feature Transformation

m Orthogonal transformation (orthogonal bases)

m DCT (discrete cosine transform)
m PCA (principal component analysis)

m Transformation based on the bases that maximises the sepa-
rability between classes.

m LDA (linear discriminant analysis) / Fisher’s linear dis-
crminant

m HLDA (heteroscedastic linear discriminant analysis)
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A comparison of speech features

I. Mporas, et al., “Comparison of Speech Features on the Speech Recognition Task”,
Journal of Computer Science, Vol.3, pp.608—616, 2007.

Feature WER(%) | SER(%)
SBC (16) 6.2 21.3
WPSR125 (16) 6.3 21.8
OWPF (16) 6.4 221
LFCC-FB40 6.9 23.5
HFCC-FB23 8.2 27.3
HFCC-FB40 8.7 28.2
PLP-FB19 9.0 294
MFCC-FB40 9. 299
SBC Subband-based Cepstral Coefficients

WPSR Wavelet packet features

OWPF Overlapping wavelet packet features

WPSR Wavelet packet-based speech features

LFCC-FB Linear-spaced filter-bank based cepstral coefficients
HFCC-FB Human factor cepstral coefficients

NB The above result was obtained for TIMIT speech corpus. Results might
change a lot under different conditions (e.g. noise, tasks, ASR systems)
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Further topics on feature extraction

m Feature normalisation/enhancement in terms of

m noise / environments
m speakers / speaking styles
m speech recognition

m Pitch (F|)) adapted feature extraction
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SUMMARY

B Nyquist Sampling theory
m Short-time Spectrum Analysis

m Non-parametric method

e Short-time Fourier Transform
e Cepstrum, MFCC
e Filter bank

m Parametric methods
e LPC, PLP
m Windowing effect: trade-off between time and frequency
resolutions

B Dynamic features (delta features)
m There is no best feature that can be used for any purposes,

but MFCC is widely used for ASR and TTS.

ASR (H. Shimodaira) 1:44



SUMMARY. ... »

m Front-end analysis has a great influence on ASR performance.

m For robust ASR in real environments, various techniques for
front-end processing have been proposed. e.g. spectral sub-
traction (SS), cepstral mean normalisation (CMN)

m Spectrum analysis and feature extraction involve informa-
tion loss and non-linear distortions. There is always a trade-
off between accuracy and efficiency. (e.g. spatial resolution
vs. temporal resolution)
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