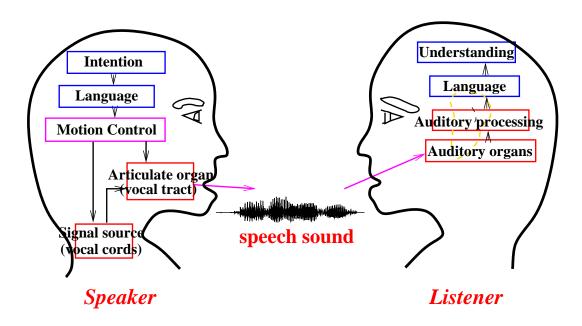
# **Automatic Speech Recognition** handout (1)

Jan - Mar 2012 Revision: 1.1

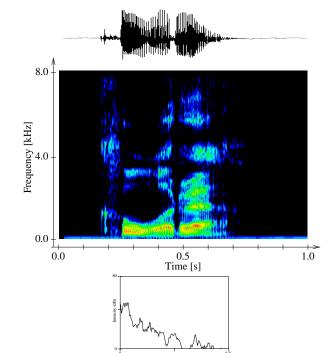
**Speech Signal Processing and Feature Extraction** 

Hiroshi Shimodaira (h.shimodaira@ed.ac.uk)

### **Speech Communication**



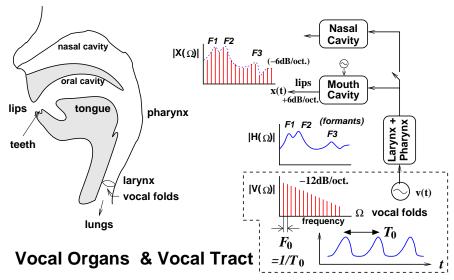
#### Waveform



#### **Spectrogram**

## Cross-section of spectrogram

### Speech Production Model



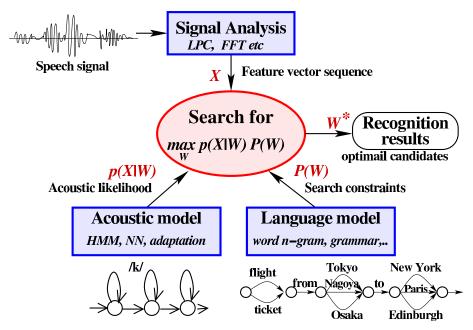
Time domain: 
$$x(t) = h(t) * v(t) = \int_0^\infty h(\tau) v(t-\tau) d\tau$$
   
  $\downarrow$  Fourier transform

Frequency domain:  $X(\Omega)=H(\Omega)V(\Omega)$   $\Omega$ : angular frequency (=  $2\pi F$ )

frequency

### **Automatic Speech Recognition**

Find the word sequence W such that  $\max_{W} P(W|X) = \max_{W} \frac{P(X|W)P(W)}{P(X)}$ 

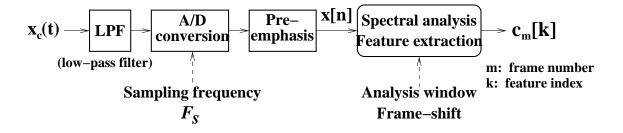


(after Sagayama, "Speech Translation Telephony",1994)

### Signal Analysis for ASR

#### Front-end analysis

Convert acoustic signal into a sequence of feature vectors e.g. MFCCs, PLP cepstral coefficients



### Feature parameters for ASR

#### Features should

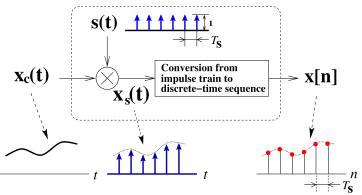
- contain sufficient information to distinguish phonemes / phones
  - good time-resolutions [e.g. 10ms]
  - good frequency-resolutions [e.g. 20 channels/Bark-scale]
- $lue{}$  not contain (or be separated from)  $F_0$  and its harmonics
- be robust against speaker variation
- **be robust against noise / channel distortions**
- have good characteristics in terms of pattern recognition
  - **■** The number of features is as few as possible
  - **■** Features are independent of each other

## Converting analogue signals to machine readable form

- Discretisation (sampling)  $x_c(t) \rightarrow x[n]$ 
  - $\blacksquare$  continuous time  $\Rightarrow$  discrete time
  - **■** continuous amplitude ⇒discrete amplitude

Problem: information can be lost by sampling

#### Sampling of continuous-time signals



- **Continuous-time signal:**  $x_c(t)$
- Modulated signal by a periodic impulse train:

$$x_s(t) = x_c(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \sum_{n=-\infty}^{\infty} x_c(nT_s)\delta(t - nT_s)$$

**Sampled signal:**  $x[n] = x_s(nT_s)$  ··· discrete-time signal

 $T_s$ : Sampling interval

#### Sampling of continuous-time signals(cont. 2)

O: Is the C/D conversion invertible?

$$x_c(t) \stackrel{C/D}{\longrightarrow} x[n] \stackrel{D/C}{\longrightarrow} x_c(t)$$
?

#### Sampling of continuous-time signals(cont. 3)

**Q:** Is the C/D conversion invertible?

$$x_c(t) \stackrel{C/D}{\longrightarrow} x[n] \stackrel{D/C}{\longrightarrow} x_c(t)$$
?

A: "No" in general, but

"Yes" under a special condition:

"Nyquist sampling theorem"

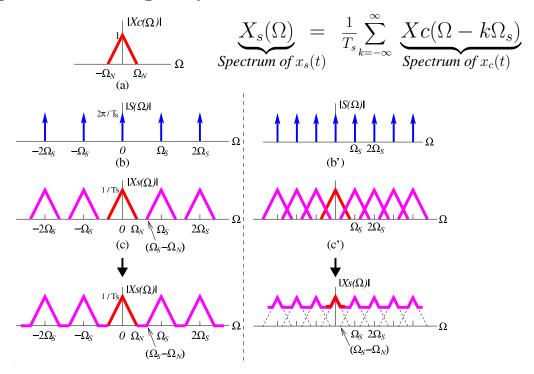
If  $x_c(t)$  is band-limited (i.e. no frequency components  $> F_s/2$ ), then  $x_c(t)$  can be fully reconstructed by x[n].

$$x_{c}(t) = h_{T_{s}}(t) * \sum_{k=-\infty}^{\infty} x[k]\delta(t - kT_{s}) = \sum_{k=-\infty}^{\infty} x[k]h_{T_{s}}(t - kT_{s})$$
$$h_{T_{s}}(t) = \operatorname{sinc}(t/T_{s}) = \frac{\sin(\pi t/T_{s})}{\pi t/T_{s}}$$

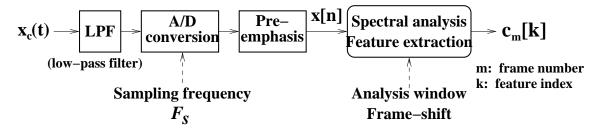
 $F_s/2$ : Nyquist Frequency,  $F_s = 1/T_s$ : Sampling Frequency

#### Sampling of continuous-time signals(cont. 4)

#### **Interpretation in frequency domain:**



#### Sampling of continuous-time signals(cont. 5)



#### **Questions**

- 1. What sampling frequencies  $(F_s)$  are used for ASR ?
  - **microphone voice:**  $12kHz \sim 20kHz$
  - **telephone voice:**  $\sim 8kHz$
- 2. What are the advantages / disadvantages of using higher  $F_s$ ?
- 3. Why is pre-emphasis (+6dB/oct.) employed?

$$x[n] = x_0[n] - ax_0[n-1], \quad a = 0.95 \sim 0.97$$

### Spectral analysis: Fourier Transform

**■** FT for continuous-time signals (& continuous-frequency)

$$X_c(\Omega) = \int_{-\infty}^{\infty} x_c(t) e^{-j\Omega t} dt$$
 (time domain  $o$  freq. domain)  $x_c(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} X_c(\Omega) e^{j\Omega t} d\Omega$  (freq. domain  $o$  time domain)

**■** FT for discrete-time signals (& continuous-frequency)

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$$

$$|X(e^{j\omega})|^2 \quad \cdots \quad \text{Power spectrum}$$

$$\log |X(e^{j\omega})|^2 \quad \cdots \quad \text{Log power spectrum}$$
where  $\omega = T_s\Omega = 2\pi f$ ,
$$e^{-j\omega n} = \cos(\omega n) + j\sin(\omega n), \quad j: \text{ the imaginary unit}$$

### An interpretation of FT

#### **Inner product** between two vectors (Linear Algebra)

#### **2-dimensional case**

$$\mathbf{a} = (a_1, a_2)^t$$

$$\mathbf{b} = (b_1, b_2)^t$$

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^t \mathbf{b} = a_1 b_1 + a_2 b_2$$

$$= \parallel \mathbf{a} \parallel \parallel \mathbf{b} \parallel \cos \theta$$

#### **■ Infinite-dimensional case**

$$\mathbf{x} \triangleq \{x[n]\}_{-\infty}^{\infty}$$

$$\mathbf{e}_{\omega} \triangleq \{\mathbf{e}^{j\omega n}\}_{-\infty}^{\infty} = \{\cos(\omega n) + j\sin(\omega n)\}_{-\infty}^{\infty}$$

$$\triangleq \mathbf{cos}_{\omega} + j\mathbf{sin}_{\omega}$$

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} x[n]e^{-j\omega n} = \mathbf{x} \cdot \mathbf{e}^{j\omega n} = \mathbf{x} \cdot \mathbf{cos}_{\omega} + j\mathbf{x} \cdot \mathbf{sin}_{\omega}$$

 $m{x}\cdot \mathbf{cos}_{\omega}$ : proportion of how much  $\mathbf{cos}_{\omega}$  component is contained in  $m{x}$ 

### **Short-time Spectrum Analysis**

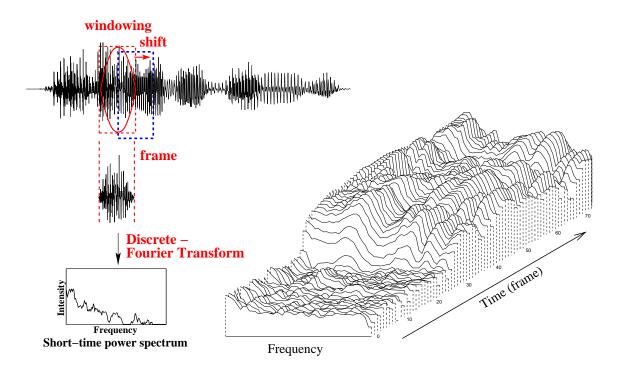
#### **Problem with FT**

- Assuming signals are stationary: signal properties do not change over time
- **■** If signals are non-stationary
  - $\Rightarrow$  loses information on time varying features
- ⇒ Short-time Fourier transform (STFT) (Time-dependent Fourier transform)

Divide the signal x[n] into short-time segments (frames)  $x_k[m]$  and apply FT to each segment.

$$x[n]$$
  $x_1[m]$ ,  $x_2[m]$ , ...,  $x_k[m]$ , ...  
 $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   
 $X(\omega)$   $X_1(\omega)$ ,  $X_2(\omega)$ , ...,  $X_k(\omega)$ , ...

### **Short-time Spectrum Analysis**(cont. 2)



### **Short-time Spectrum Analysis**(cont. 3)

**■** Trade-off problem of short time spectrum analysis

|                             | window width                       |  |
|-----------------------------|------------------------------------|--|
|                             | $\mathbf{short} \to \mathbf{long}$ |  |
| <b>frequency resolution</b> | 7                                  |  |
| time resolution             |                                    |  |

 $\Rightarrow$  a compromise for ASR:

window width (frame width):  $20 \sim 30 \text{ ms}$ 

window shift (frame shift):  $5 \sim 15 \text{ ms}$ 

### The Effect of Windowing in STFT

#### Time domain:

$$y_k[n] = w_k[n]x[n], \quad w_k[n]$$
: time-window for k-th frame

Simply cutting out a short segment (frame) from x[n] implies applying a rectangular window on to x[n].

 $\Rightarrow$  causes discontinuities at the edges of the segment.

Instead, a tapered window is usually used.. e.g. Hamming ( $\alpha = 0.46164$ ) or Hanning ( $\alpha = 0.5$ ) window)

$$w[\ell] = (1-\alpha) - \alpha \cos\left(\frac{2\pi\ell}{N-1}\right) \qquad N : \text{window width}$$
 rectangle Hamming Hanning Blackman Bartlett

### The Effect of Windowing in STFT(cont. 2)

#### Frequency domain:

$$Y_k(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W_k(e^{j\theta}) X(e^{j(\omega-\theta)}) d\theta \quad \cdots \quad \text{Periodic convolution}$$

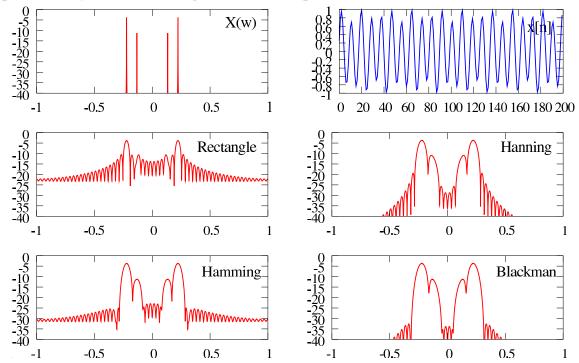
- Power spectrum of the frame is given as a periodic convolution between the power spectra of x[n] and  $w_k[n]$ .
- If we want  $Y_k(e^{j\omega})=X(e^{j\omega})$ , the necessary and sufficient condition for this is  $W_k(e^{j\omega})=\delta(\omega)$ , i.e.  $w_k[n]=\mathcal{F}^{-1}\delta(\omega)=1$ , which means the length of  $w_k[n]$  is infinite.  $\Rightarrow$  there is no window function of finite length that causes no

 $\Rightarrow$  there is no window function of finite length that causes no distortion.

NB: hereafter x[n] will be also used to denote a segmented signal for simplicity.

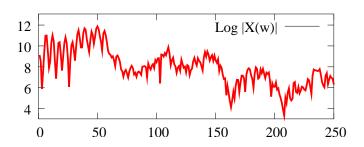
### The Effect of Windowing in STFT(cont. 3)

#### Spectral analysis of two sine signals of close frequencies



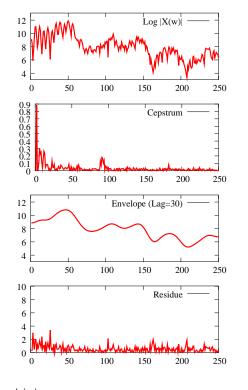
#### **Problems with STFT**

- The estimated power spectrum contains harmonics of  $F_0$ , which makes it difficult to estimate the envelope of the spectrum.
- Frequency bins of STFT are highly correlated each other, i.e. power spectrum representation is highly redundant.



### Cepstrum Analysis

Idea: split(deconvolve) the power spectrum into spectrum envelope and  $F_0$  harmonics.



**Log-spectrum** [freq. domain]

**↓** Inverse Fourier Transform

**Cepstrum** [time domain] (quefrency)

- Liftering to get low/high part (lifter: filter used in cepstral domain)
- **↓** Fourier Transform

**Smoothed-spectrum** [freq. domain] (low-part of cepstrum)

**Log-spectrum of high-part of cepstrum** 

### Cepstrum Analysis (cont. 2)

$$x[n] = h[n] * v[n] \qquad \qquad \begin{array}{c} h[n] \colon \text{ vocal tract} \\ v[n] \colon \text{ glottal sounds} \end{array}$$
 
$$\downarrow \mathcal{F} \quad \text{(Fourier transform)}$$
 
$$X(e^{j\omega}) = H(e^{j\omega})V(e^{j\omega})$$
 
$$\log |x(e^{j\omega})| = \underbrace{\log |H(e^{j\omega})|}_{\text{(spectral envelope)}} + \underbrace{\log |V(e^{j\omega})|}_{\text{(spectral fine structure)}}$$
 
$$\downarrow \mathcal{F}^{-1}$$
 
$$c(\tau) = \mathcal{F}^{-1} \left\{ \log |X(e^{j\omega})| \right\}$$
 
$$= \mathcal{F}^{-1} \left\{ \log |H(e^{j\omega})| \right\} + \mathcal{F}^{-1} \left\{ \log |V(e^{j\omega})| \right\}$$

### LPC Analysis

**Linear Predictive Coding (LPC):** 

a model-based / parametric spectrum estimation

Assume a "linear system" for human speech production

sound source 
$$v[n] \Rightarrow \boxed{\text{vocal tract}} \Rightarrow \text{speech } x[n]$$
 
$$v[n] \longrightarrow \boxed{h[n]} \longrightarrow x[n] \qquad h[n]: \text{ impulse response}$$
 
$$x[n] = h[n] * v[n] = \sum_{k=0}^{\infty} h[k] \, v[n-k]$$

#### Using a model enables us to

- estimate a spectrum of vocal tract from small amount of observations
- represent the spectrum with a small number of parameters

synthesise speech with the parameters

### LPC Analysis(cont. 2)

**Predict** x[n] from  $x[n-1], x[n-2], \cdots$ 

$$\hat{x}[n] = \sum_{k=1}^N a_k x[n-k]$$
  $e[n] = x[n] - \hat{x}[n] = x[n] - \sum_{k=1}^N a_k x[n-k]$   $\cdots$  prediction error

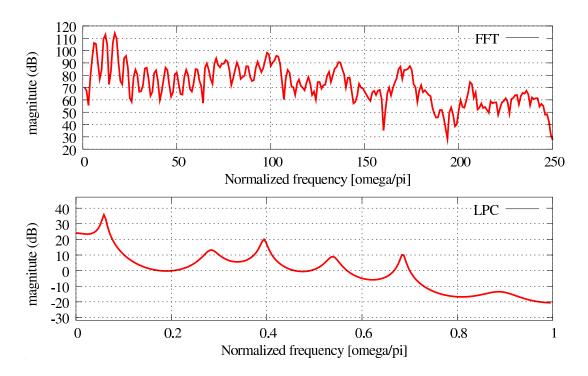
#### **Optimisation problem**

Find  $\{a_k\}$  that minimises the mean square (MS) error:

$$P_e = E\left\{e^2[n]\right\} = E\left\{\left(x[n] - \sum_{k=1}^{N} a_k x[n-k]\right)^2\right\}$$

 $\{a_k\}$ : LPC coefficients

### Spectrums estimated by FT & LPC



### LPC summary

- $lue{}$  Spectrum can be modelled/coded with around 14LPCs.
- **LPC family** 
  - **PARCOR (Partial Auto-Correlation Coefficient)**
  - LSP (Line Spectral Pairs) / LSF (Line Spectrum Frequencies)
  - **CSM (Composite Sinusoidal Model)**
- LPC can be used to predict log-area ratio coefficients lossless tube model
- **LPC-(Mel)Cepstrum: LPC based cepstrum.**
- Drawback:
  - LPC assumes AR model which does not suit to model nasal sounds that have zeros in spectrum.

lacktriangle Difficult to determine the prediction order N.

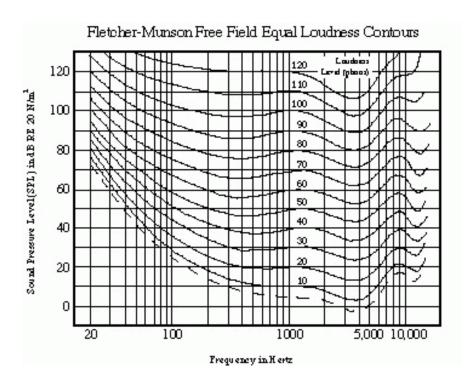
### Taking into Perceptual Attributes

| Physical quality                     | Perceptual quality |
|--------------------------------------|--------------------|
| Intensity                            | Loudness           |
| Fundamental frequency                | Pitch              |
| Spectral shape                       | Timbre             |
| Onset/offset time                    | Timing             |
| Phase difference in binaural hearing | Location           |

#### **Technical terms**

- **equal-loudness contours**
- masking
- auditory filters (critical-band filters)
- critical bandwidth

### Taking into Perceptual Attributes (cont. 2)



### Taking into Perceptual Attributes (cont. 3)

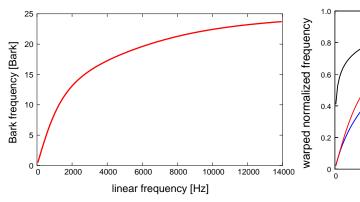
#### Non-linear frequency scale

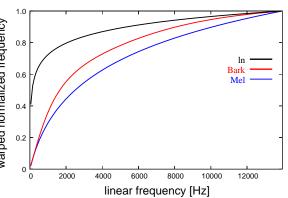
#### Bark scale

$$b(f) = 13\arctan(0.00076f) + 3.5\arctan((f/7500)^2)$$
 [Bark]

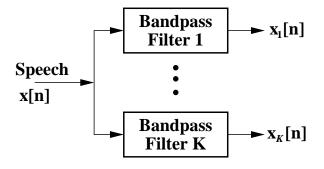
#### Mel scale

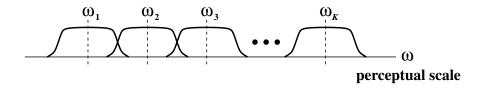
$$B(f) = 1127 \ln(1 + f/700)$$





#### Filter Bank Analysis

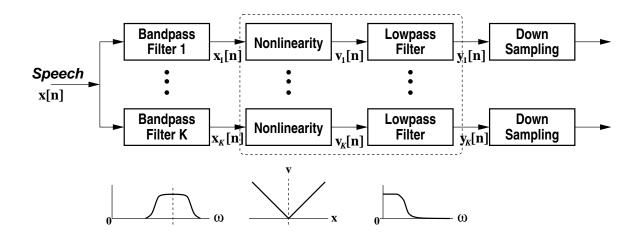




$$x_i[n] = h_i[n] * x[n] = \sum_{k=0}^{M_i-1} h_i[k]x[n-k]$$

 $h_i[n]$ : Impulse response of Bandpass filter i

### Filter Bank Analysis(cont. 2)

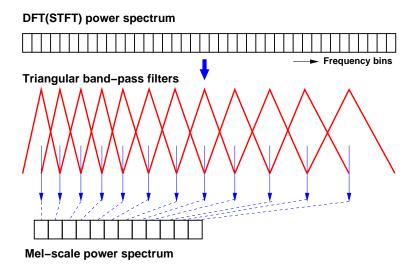


#### Trade-off problem

| Freq. resolution | # of filters | length of filter | Time resolution |
|------------------|--------------|------------------|-----------------|
|                  | 7            | 7                | \               |
|                  | \            | \                | 7               |

#### Filter Bank Analysis (cont. 3)

Another implementation of filter banks: apply a mel-scale filter bank to STFT power spectrum to obtain mel-scale power spectrum





#### **MFCC:** Mel-frequency Cepstral Coefficients c[n]

$$x[n] \xrightarrow{\mathbf{DFT}} X[k] \to |X[k]|^2 \xrightarrow{\mathbf{filterbank}} \log |S[m]| \xrightarrow{\mathbf{DCT}} c[n]$$

$$\mathbf{DCT:} \quad c[n] = \sqrt{\frac{2}{N}} \sum_{i=1}^{N} s[i] \cos \left(\frac{\pi n(i-0.5)}{N}\right), \quad \text{where } s[i] = \log |S[i]|$$

DFT: discrete Fourier transform, DCT: discrete cosine transform

- MFCCs are widely used in HMM-based ASR systems.
- The first 12 MFCCs ( $c[1] \sim c[12]$ ) are generally used.



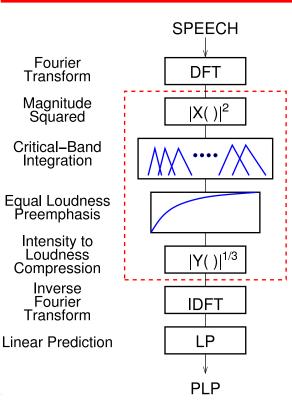
- MFCCs are less correlated each other than DCT/Filter-bank based spectrum.
- **■** Good compression rate.

| Feature             | dimensionality / frame |
|---------------------|------------------------|
| Speech wave         | 400                    |
| <b>DCT Spectrum</b> | $64 \sim 256$          |
| Filter-bank         | $10 \sim 20$           |
| MFCC                | 12                     |

where  $F_s = 16kHz$ , frame-width = 25ms, frame-shift = 10ms are assumed.

■ MFCCs show better ASR performance than filter-bank features, but MFCCs are not robust against noises.

#### Perceptually-based Linear Prediction (PLP)



[Hermansky, 1985,1990]

PLP had been shown experimentally to be

- more noise robust
- more speaker independent

than MFCCs

# Other features with low dimensionality

■ Formants  $(F_1, F_2, F_3, \cdots)$ 

They are not used in modern ASR systems, but why?

# Using temporal features: dynamic features

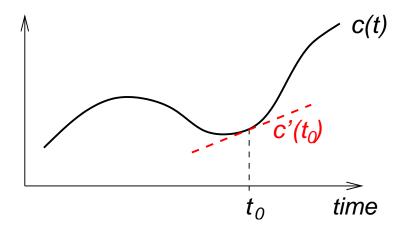
#### In SP lab-sessions on speech recognition using HTK,

- MFCCs, and energy
- lacktriangle  $\Delta$  MFCCs,  $\Delta$  energy
- $\triangle$   $\triangle$  MFCCs,  $\triangle$  energy

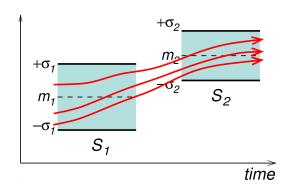
$$\Rightarrow \Delta *, \Delta^2 *$$
: delta features (dynamic features / time derivatives) [Furui, 1986]

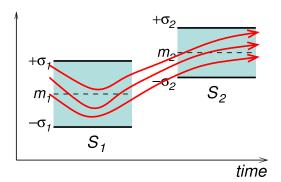
| continuous time                 | discrete time                                                                                                      |                     |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------|
| c(t)                            | c[n]                                                                                                               |                     |
| $c'(t) = \frac{dc(t)}{dt}$      | $\Delta c[n] egin{array}{c c} \sum_{i=-M}^M w_i  c[n+i] & 	ext{e.g. } \Delta c[n] = rac{c[n+1]-c}{2} \end{array}$ | $\frac{-c[n-1]}{2}$ |
| $c''(t) = \frac{d^2c(t)}{dt^2}$ | $\Delta^2 c[n] \left  \sum_{i=-M}^{M} w_i  \Delta c[n+i] \right $                                                  |                     |

# Using temporal features: dynamic features (cont. 2)



# Using temporal features: dynamic features<sub>(cont. 3)</sub>





- An acoustic feature vector, eg MFCCs, representing part of a speech signal is highly correlated with its neighbours.
- HMM based acoustic models assume there is no dependency between the observations.
- Those correlations can be captured to some extent by augmenting the original set of static acoustic features, eg. MFCCs, with dynamic features.

#### General Feature Transformation

- Orthogonal transformation (orthogonal bases)
  - **DCT** (discrete cosine transform)
  - **PCA** (principal component analysis)
- Transformation based on the bases that maximises the separability between classes.
  - LDA (linear discriminant analysis) / Fisher's linear discriminant
  - **HLDA** (heteroscedastic linear discriminant analysis)

## A comparison of speech features

I. Mporas, et al., "Comparison of Speech Features on the Speech Recognition Task", Journal of Computer Science, Vol.3, pp.608–616, 2007.

| Feature             | WER(%) | SER(%) |
|---------------------|--------|--------|
| <b>SBC</b> (16)     | 6.2    | 21.3   |
| <b>WPSR125</b> (16) | 6.3    | 21.8   |
| <b>OWPF</b> (16)    | 6.4    | 22.1   |
| LFCC-FB40           | 6.9    | 23.5   |
| HFCC-FB23           | 8.2    | 27.3   |
| HFCC-FB40           | 8.7    | 28.2   |
| PLP-FB19            | 9.0    | 29.4   |
| MFCC-FB40           | 9.0    | 29.9   |

| SBC         | <b>Subband-based Cepstral Coefficients</b>            |
|-------------|-------------------------------------------------------|
| WPSR        | Wavelet packet features                               |
| <b>OWPF</b> | Overlapping wavelet packet features                   |
| WPSR        | Wavelet packet-based speech features                  |
| LFCC-FB     | Linear-spaced filter-bank based cepstral coefficients |
| HFCC-FB     | Human factor censtral coefficients                    |

NB The above result was obtained for TIMIT speech corpus. Results might change a lot under different conditions (e.g. noise, tasks, ASR systems)

## Further topics on feature extraction

- **■** Feature normalisation/enhancement in terms of
  - noise / environments
  - speakers / speaking styles
  - **■** speech recognition
- Pitch  $(F_0)$  adapted feature extraction

## **SUMMARY**

- Nyquist Sampling theory
- **Short-time Spectrum Analysis** 
  - **■** Non-parametric method
    - Short-time Fourier Transform
    - Cepstrum, MFCC
    - Filter bank
  - **■** Parametric methods
    - LPC, PLP
  - Windowing effect: trade-off between time and frequency resolutions
- Dynamic features (delta features)
- There is no best feature that can be used for any purposes, but MFCC is widely used for ASR and TTS.

## **SUMMARY**(cont. 2)

- **■** Front-end analysis has a great influence on ASR performance.
- For robust ASR in real environments, various techniques for front-end processing have been proposed. e.g. spectral subtraction (SS), cepstral mean normalisation (CMN)
- Spectrum analysis and feature extraction involve information loss and non-linear distortions. There is always a tradeoff between accuracy and efficiency. (e.g. spatial resolution vs. temporal resolution)

## References

- John N. Holmes, Wendy J. Holmes, "Speech Synthesis and Recognition", Taylor and Francis (2001), 2nd edition (chapter 2, 4, 10)
- http://mi.eng.cam.ac.uk/comp.speech/
- http://mi.eng.cam.ac.uk/~ajr/SpeechAnalysis/
- http://cslu.cse.ogi.edu/HLTsurvey/
- B. Gold, N. Morgan, "Speech and Audio Signal Processing: Processing and Perception of Speech and Music", John Wiley and Sons (1999).
- "Spoken language processing: a guide to theory, algorithm, and system development", Xuedong Huang, Alex Acero and Hsiao-Wuen Hon, Prentice Hall (2001). isbn: 0130226165

## References(cont. 2)

- "Robusness in Automatic Speech Recognition", J-C Junqua and J-P Hanton, , Kluwer Academic Publications (1996). isbn: 0-7923-9646-4
- **"A Comparative Study of Traditional and Newly Proposed Features for Recognition of Speech Under Stress"**, Sahar Bou-Ghazale and John H.L. Hansen, IEEE Trans SAP, vol. 8, no. 4, pp.429–442, July 2000.