
Automatic Speech Recognition 2011-12: Lab-session (3)
— Continuous speech recognition (part 1 of 3) —
Hiroshi Shimodaira (Revision : 1.1)

In this lab session you will

• train monophone models on the WSJCAM0 database using HTK1

• investigate how recognition accuracy changes with more training

• try different amount of pruning during recognition (and possibly during training)

• try different values of the language model scaling

• plot accuracy against the various parameters

1 Preparation

1.1 Initialisation

You should use the following work directory (’WorkDir’ here after) that is allocated to you in this course
throughout the experiments.

/afs/inf.ed.ac.uk/group/teaching/asr/Work/YourLoginName

where YourLoginName denotes your login name.

% cd WorkDir
% /afs/inf.ed.ac.uk/group/teaching/asr/bin/init-t3

You will find the following directories under WorkDir.

dir names contents
corpus/ original corpus (wsjcam0) and parameterised data (WSJCAM0)
file lists/ lists of files for training and recognition
labels/ phone and word labels
model lists/ list of HMM model names
dictionaries/ word lists and pronunciation dictionaries
language models/ language models
scripts/ script files for training, recognition, and summarising
configs/ HTK configuration files
edfiles/ HTK edit command files
logs/ log files
recognised/ recognition output
manuals/ copy of the HTK book, reference papers

The online manual of HTK is available at this url:
WorkDir/manuals/htkbook/index.html

HINT If you want to avoid typing the long path name of WorkDir, it would be a good idea to create
a symbolic somewhere under your home directory. For example, if you’ve already had ~/asr , the
following will create a symbolic link, ~/asr/ASR, whose path name can be used instead of WorkDir.

% cd ~/asr

% ln -s WorkDir ASR

1.2 Data

Data is from the WSJCAM0 Cambridge Read News corpus provided by LDC

http://www.ldc.upenn.edu/Catalog/LDC95S24.html

You don’t need to parameterise it, as it’s already converted to MFCCs, and those MFCC files can be
found under

1http://htk.eng.cam.ac.uk

1



corpora/WSJCAM0

Do not copy the data either, use the central copy (the scripts are set up to do this).
There are about 8000 training utterances (from 90 speakers), 700 development utterances (from 20

speakers), and 20000 test ones (from 20 speakers).
The master copy of WSJCAM0, which includes speech wave files, can be found at under corpora/wsjcam0,

which is a symbolic link to

/group/corpora/public/wsjcam0

The corpus is divided into sub sets for experiments as follows:

training set si tr
development sets si dt5a, si dt5b, si dt20a, si dt20b
evaluation sets si et5a, si et5b, si et20a, si et20b

where “5” and “20” denote a data set with vocabulary of about 5000 and about 20000, respectively.
For details, please see those PDF files under the manual directory, manuals

“fransen-pye:wsjcam0:1994.pdf” corpus description
“robinson-fransen:icassp:1995.pdf” evaluation

2 Procedures

A typical procedure for training phone HMMs with HTK is as follows, where typical HTK command
names are shown in parentheses as well.

P1: with a small size of speech corpus in which phone labels are available, train
each phone HMM individually. (HCompV → HInit → HRest)

P2: with the same data set, carry out “embedded training” for the set of HMMs.
(HERest)

P3: with a large size of speech corpus with sentence/word-level transcriptions,
train the set of HMMs again. (HERest)

A typical sequence of procedures for an experiment will consist of following three steps:

Descriptions Provided script files (HTK commands)
Step 0: Preparation of

speech data
dictionary
language model

Step 1: Model training
(a) model initialisation ./scripts/prep monophones (HCompV)
(b) initial training ./scripts/init monophones (HInit,HRest)
(c) ./scripts/merge monophones

(d) embedded training ./scripts/train monophones wo sp (HERest)
(e) silence model refinement ./scripts/mk sp model

(f) label realignment ./scripts/align mlf (HVite)
(g) embedded training ./scripts/train monophones (HERest)

Step 2: Recognition ./scripts/recognise with monophones (HVite)
Step 3: Result analysis ./scripts/show results (HResult)

Note that the script files should be run at your WorkDirdirectory and nowhere else.
Step 0 has been done already. Step 1 and Step 2 are the main focus of this lab session. In Step 1 and

Step 2, there are some parameters you can change to investigate the effect to the performance of training
or recognition.

For details on HTK commands, please refer to the HTK Book, whose copy is available in the manual
directory.

2



2.1 Step 1: Model training

2.1.1 Model preparation

First of all, make sure that you are in the right directory, i.e. the top directory of this project (WorkDir).

% cd WorkDir

It should be noted that all the script commands shown hereafter are supposed to be run in this
directory, otherwise they will not work properly.

Initial phone models (HMMs) have been stored in proto/, where you will find 45 files, each of which
corresponds to a phone HMM.

Since HMMs are stored in ascii format at this stage, you can take a look at them. Try

% less proto/zh

you will see that models parameters such as mean vectors, variances of each state and transition proba-
bilities have been set to default initial values. For details on HMM definition files, please refer to HTK
Book section 7.2.

Now, run the following script, which calls HCompV to initialise model parameters based on training
data.

% ./scripts/prep_monophones

The output is saved in directory models/R1/hmmP. Take a look at a file in the directory to see which
parameters have been updated by the command.

2.1.2 Initial training

Run this command:

% ./scripts/init_monophones · · · this would take more than 10 minutes

This script runs HInit and HRest to train each phone model separately by referring phone labels given in
a Mater Label File (MLF), labels/phone/si_tr.mlf . New models are saved in models/R1/hmmI (by
HInit) and models/R1/hmmR (by HRest).

Detailed logs of the commands are saved in directory, logs/init_monophones .

2.1.3 Embedded training

So far, each phone HMM has been stored in a separate file. Hereafter, all the model files are saved into
a single file for efficiency.

Run the following script

% ./scripts/merge_monophones

which will create a merged model file, models/R1/hmm0/MODELS .
Run the following script to carry out “embedded training” (HERest) iteratively

% ./scripts/train_monophones_wo_sp 0 1 2 3

where the arguments 0 1 2 3 denote model numbers to train, i.e. it first trains hmm0 and stores the
output into hmm1, which is then used as an input for next training to produce hmm2, and so on. As a
result, the newest model will be hmm4.

2.1.4 Silence model refinement

Run this command to create another silence model, sp.

% ./scripts/mk_sp_model 4

which will store a new model set in hmm5. For details, please see HTK Book section 3.2.2.
Retrain the models by the following command

% ./scripts/train_monophones 5 6

which calls HERest twice, and the newest models will be now hmm7 .

3



2.1.5 Label realignment

Now, it’s time to create new phone labels using the current models. Run this command

% ./scripts/align_mlf 7

which will crate a new MLF, labels/phone/mono-algned2.mlf .
(This will take a couple of minutes.)

2.1.6 Model retraining with new labels

Run the following command to retrain the models.

% ./scripts/train_monophones_realigned 7 8

In the above example, we repeat embedded training two times. However, the optimal number of iteration
varies depending on the data you use. You could investigate how the number of training iteration would
affect recognition accuracy on test data.

2.2 Step 2: Recognition

Assuming the newest model set you got is hmm9, run the following command

% ./scripts/recognise_with_monophones 9

which runs HVite on test data set (“si dt5a”) using hmm9 in models/R1 .
The recognition output is stored in the directory, recognised/R1 .

% ls -l recognised/R1 · · · you will get a list of recognition output files
% less recognised/R1/hmm9_si_dt5a_output.mlf

Recognition speed and accuracy vary depending on the parameters. Please see
Try turning pruning off altogether...

2.3 Step 3: Result analysis

Run the script to get results

% ./scripts/show_results 9

The first argument “9” denotes the model number used for recognition.
Make sure you understand the output from HResults (HTK Book section 3.4.1 and 17.19.1).

BEWARE: If you have too much pruning, the decoder (HVite) will fail on some files and give an error
message of “No token survived ...”, and then HResults will not give you correct statistics because
it reports results only on actually recognised output.

– so make sure it reports 368 sentences (for “si dt5a” set), i.e. N = 368, or at least, not too many
fewer than that, otherwise you might get misleading WER figures.

3 Experiments

3.1 things to investigate

1. Plot WER against at least those parameters:

• pruning level

• language model scaling factor

• number of training iterations

whose details are described in following sections.

2. Measure speed

4



3.2 Parameters for recognition

HVite has several parameters you might want to change. Plot graphs of WER against the value of each
parameter (holding other parameters fixed). Note that the effects of the parameters interact.

You might want to write scripts to automate this process, and collate the results automatically. If
you have no idea about Shell script programming, visit this web page for a quick introduction:

http://www.faqs.org/docs/Linux-HOWTO/Bash-Prog-Intro-HOWTO.html

and feel free to ask me if you need help with writing shell scripts.
Note that the provided script files are not editable (i.e. write protected). you need to create copies

of them with different file names from the original ones so that you can edit your own script files to
change parameters. The following example will create your own script ‘my_train_monophones” against
the original “train_monophones” :

% cd scripts

% cp -p train_monophones my_train_monophones

% cd ..

• Pruning: (-t flag to HVite, start with values around 90, say 50 to 200) Stick to the same HMMs
(a fully trained set, not iteration 0). Alter the script to only use one of the four test sets if things
are running slowly (but do not plot results for one test set on the same plot as for another, or all
four). The scripts are provided with beam width set to 70, which probably is too harsh but makes
the recogniser run fast.

• Language model scaling factor: (-s flag to HVite). When the log probabilities for acoustic
model and language model are summed, the LM can be weighted. The scripts use a reasonable
default, try varying the value either side of this. This parameter will need re-tuning when you try
a different language model later on.

• Word insertion probability: (-p flag to HVite). Controls insertion/deletion ratio. A good rule
of thumb is to make number of insertion and deletion errors equal. I would optimise this parameter
after setting the LM scaling factor.

3.3 Parameters for training

During training, you can vary the amount of α and β pruning by changing the argument
-t 100 100 600, where the first 100 is a log probability beam width. If training fails at that level of
pruning (i.e. all αs and βs get pruned), HERest will add another 100 (the second number after the -t)
and try that utterance again. It will keep adding 100 until it reaches 600, then give up. Leave this until
later: you can return to this section and try tightening up that pruning to see if good models are still
trained. For now, just train some models up using the current parameters. To understand what α and β
pruning is, you need to understand the derivation of the Baum-Welch algorithm.

3.4 Measuring speed

You will have noticed that some scripts preface commands with /usr/bin/time. Unsurprisingly, this
reports the time a program takes to run (try time ls), which would be shown in the last lines in the log
file.

You should record the “user” time and not the “real” time. The latter is the actual elapsed time
which will be longer than the time the process actually spent running on the CPU, since UNIX machines
run many processes at once by allowing them to take turns on the CPU. On a heavily loaded machine,
the “real” time may be considerably more than the “user” time. The “system” time is the time spent
waiting for things like file access and should generally be small. Note that the format of the output from
time may vary slightly across machines running different versions of Unix.

IMPORTANT: to make speed comparisons, always measure the speed on the exact same type of ma-
chine. Note that a couple of the machines in the lab (at the front) are slightly different hardware
to the rest.

5



3.5 Hints

• Train a set of models and do several recognition experiments which means you don’t need to retrain
the models each time. Then retrain the models with different pruning, and do the same recognition
experiments.

• Try and keep the machines busy - you can even do testing on one model set whilst training another,
to save time, just don’t get in a muddle. And, as ever, keep a clear record of your experiments and
results.

6



4 Assignment

You should complete all 3 parts of the assignment (part 2 and 3 will be available next week and the week
after next). Your coursework submission is complete only if you have done the following two submissions:

• submission of report (in PDF or Word format)

• submission of your ASR system that gave the highest recognition accuracy

The submission deadline is Thursday, 5th April 2012 at 16:00.
Your coursework will be assessed mainly based on

• quality of experiments/investigation

• quality of report and discussions

Note that your coursework should be done solely by yourself, meaning you cannot use reports/documents,
programs, files, or experimental results of someone else (except the programs/scripts provided in the
course). However, you may have discussions with your colleagues. For plagiarism, please see:

http://www.inf.ed.ac.uk/teaching/plagiarism.html

4.1 Submission of report

1. Download a report template package from the course web page. There are two versions available,
one for LaTeX, the other for Microsoft Word (Open Office). You can use either one.

2. As you will find in the package, your report submission should consist of the following two docu-
ments:

(a) coversheet

(b) report

For the purpose of anonymous assessment of reports, do not write your name or matriculation
number on your report, but write your ”pseudonym” on the first page of the report. A pseudonym
can be any word(s) or letter/digit sequence but your own name. On your coversheet, indicate your
name, matriculation name, and pseudonym.

3. Submit your report and coversheet files with the ”submit” command in DICE computing environ-
ment. The following shows an example of submitting two files, ”report.pdf” and ”coversheet.pdf”.

% submit asr 1 report.pdf coversheet.pdf

4. You should receive an email of acknowledgement from the system as soon as your submission has
been received successfully. Keep the message as an evidence of your coursework submission.

4.2 Submission of the best ASR system

This part can be minimal as long as you use WorkDir and you keep all the relevant files (i.e. all the
models you trained, and other files needed to run the system) there. If it is not the case, please contact
the course lecturer for advise.

Having all the relevant files stored in WorkDir, go to ”scripts” directory under WorkDir, and create a
recognition script whose file name is ”run_the_best_system”. It could be just a copy of your recognition
script that gave the best result. Make sure that HMM model directory and HVite options are set properly
in the script so that it gives the same result (accuracy) as the one for the best system described in your
report.

4.3 Report writing

Your report should be prepared using report templates, which will be provided on the course web page
shortly. Keep the length of your report between 5 and 8 pages including figures, tables, and references.

You should look into the following points and write a “scientific report”. For higher marks, you need
to give good discussions based on both theories and experiments, and you will also need to try the optional
items.

7



1. Monophone models

• investigate how the three parameters (-t, -s, -p) of HVite influence recognition performance
(i.e. accuracy and speed), and summarise the results using graphs, e.g. graphs of WER vs.
pruning threshold, WER vs. speed, etc.

• find the optimal number of mixture components (optional)

• carry out experiments using different feature vectors, e.g. MFCC without delta features (op-
tional)

2. Tied-state triphone models

• investigate how the number of clusters influences recognition performance by varying the
threshold value for “TB” command of HHEd (see ./scripts/mk_tied_triphones). Draw
a graph of recognition accuracy in terms of the total number of free model parameters (or the
number of clusters).

• seek the optimal configuration of parameters that gives highest recognition accuracy (optional).

3. MLLR speaker adaptation

• investigate the relationship between the number of regression classes and recognition perfor-
mance.

• try adaptation experiments for different HMMs (e.g. different numbers of mixture components,
triphone models) [optional]

• investigate the relationship between the amount of training samples and recognition perfor-
mance. [optional]

• based on the experiments, discuss the limitation of this type of adaptation and what modifi-
cation could be done. [optional]

The following are some technical instructions on writing reports.

• experimental results should be efficiently summarised using figures or tables (but not both if pos-
sible) - avoid using a separate graph/table for each experiment.

• figures/tables should be numbered and captioned.

• experimental conditions and methods should be shown clearly, using a table for example.(e.g. data
sets used for training and evaluation, relevant parameters used for training and evaluation) Providing
sufficient information is very important for scientific reports (see below) so that other people could
redo the same experiments.

• show results even if there was no improvement. It is important to discuss/analyse why there was
no improvement.

• for “scientific method” and “scientific report”, please see

http://en.wikipedia.org/wiki/Scientific method
http://www.unc.edu/depts/wcweb/handouts/lab report complete.html

Tips on experimental design

You will see that there are a large number of combinations of parameters which will affect training speed,
recognition speed and recognition accuracy. Although it does not take much time for carrying out a
single session of experiment with the default parameter set, it will take much longer for certain sets of
parameters. In addition, it’s not feasible to try all of the possible combinations of the parameters. Plan
what experiments are needed and how they should be carried out.

To carry out experiments efficiently, it is a very good idea that you create script files which test various
parameter combinations automatically.

You should start experiments as soon as possible in order not to miss the deadline.

8


