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Overview

Today’s lecture

Recognising speech in presence of additive noise

Feature compensation approaches

Model compensation approaches

Steve Renals Environmental robustness 2

Additive Noise

Multiple acoustic sources are the norm rather than the
exception

From the point of view of trying to recognize a single stream
of speech, this is additive noise

Stationary noise: frequency spectrum does not change over
time (e.g. air conditioning, car noise at constant speed)

Non-stationary noise: time-dependent frequency spectrum
(e.g. breaking glass, workshop noise, music, speech)

Measure the noise level as SNR (signal-to-noise ratio),
measured in dB

30dB SNR sounds noise free
0dB SNR has equal signal and noise energy
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Aurora-2

Aurora is a standard set of speech + noise databases used in
robust ASR research

Aurora-2 speaker-independent continuously spoken strings of
digits (TI-digits)

11 word vocabulary
Artificially added noise of different types:

A: subway, babble, car exhibition
B: restaurant, street, airport, station
C: subway, street
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Recognizing Aurora-2 using Clean Speech Models
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Mismatch between clean and noisy speech

Environmental Robustness 33.1 Noise Robust Speech Recognition 655

Table 33.1 Word accuracy for the Aurora 2 test sets using the clean acoustic model baseline

SNR (dB) Test set A Test set B Test set C Average

Clean 99.63 99.63 99.60 99.62
20 95.02 91.71 97.02 94.58
15 85.16 78.10 92.38 85.21
10 64.50 55.75 77.78 66.01
5 34.59 29.21 51.36 38.39
0 13.61 9.75 22.82 15.40
−5 5.87 4.08 11.47 7.14

Average (0–20) 58.58 52.90 68.27 58.25

Another common evaluation task for noise robust
speech recognition systems is the speech in noisy envi-
ronments (SPINE) evaluation [33.7]. It was created for
the Department of Defense digital voice processing con-
sortium, to support the 2000 SPINE1 evaluation. The
corpus contains 9 h 22 min of audio data, collected in
simulated noisy environments where users collaborate
using realistic handsets and communications channels
to seek and shoot targets, similar to the game Battle-
ship.

33.1.2 The Acoustic Mismatch Problem

To understand the extent of the problem of recognizing
speech in noise, it is useful to look at a concrete example.
Many of the techniques in this chapter are tested on
the Aurora 2 task. Table 33.1 contains typical results
from the baseline Aurora 2 system. Here, an acoustic
model is trained on clean, noise-free data, and tested on
data with various digitally simulated noise levels. The
accuracy on clean test data averages 99.62%, which may
be acceptable for some applications.

As soon as any noise is present in the test data,
the system rapidly degrades. Even at a mild 20 dB
signal-to-noise ratio (SNR), the system produces more
than 14 times as many errors compared to clean data.
(The signal-to-noise ratio is defined as the ratio of sig-
nal energy to noise energy in the received signal. It is
typically measured in decibels (dB), and calculated as
10log10[Energy(signal)/Energy(noise)]. An SNR above
30 dB sounds quite noise-free. At 0 dB SNR, the sig-
nal and noise are at the same level.) As the SNR
decreases further, the problem becomes more intense.
Why does an ASR system perform so poorly when pre-
sented with even mildly corrupted signals? The answer
is deceptively simple. Automatic speech recognition is
fundamentally a pattern matching problem. And, when
a system is tested on patterns that are unlike anything
used to train it, errors are likely to occur. The funda-

mental problem is the acoustic mismatch between the
training and testing data.

Figure 33.1 illustrates the severity of the problem. It
compares the histograms for C1 between clean speech
and moderately noisy speech. (C1, the first cepstral co-
efficient, is typical speech feature used by automatic
speech recognition systems.) The two histograms are
quite dissimilar. Obviously, a system trained under one
condition will fail under the other.

33.1.3 Reducing Acoustic Mismatch

The simplest solution to the acoustic mismatch prob-
lem is to build an acoustic model that is a better match
for the test data. Techniques that can be helpful in that
respect are multistyle training and model adaptation.
These types of algorithms are covered in Sect. 33.2.

Another common approach to solving the acous-
tic mismatch problem is to transform the data so that
the training and testing data tend to be more simi-
lar. These techniques concentrate on either normalizing
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Fig. 33.1 Additive noise creates a mismatch between clean
training data and noisy testing data. Here, the histogram for
a clean speech feature is strikingly different from the same
histogram computed from noisy speech
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Multistyle Training

Basic idea: Don’t train on clean speech, but train on speech
with a similar noise level (and noise type)

Matched condition — training in the same noise conditions as
testing — is rarely possible since the test conditions are nearly
always partly unknown

Multi-style training — train with speech data in a variety of
noise conditions

It is possible to artificially mix recorded noise with clean
speech at any desired SNR to create a multi-style training set

Advantage: training data much better matched to test
conditions

Disadvantage: acoustic model components become less
discriminative and less well matched to the training data

Model adaptation — can further reduce errors using an
adaptation technique such as MLLR
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Recognizing Aurora-2 using Multistyle Training
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Feature normalization

Basic idea: Transform the features to reduce mismatch
between training and test
Cepstral Mean Normalization (CMN): subtract the mean of
the feature vectors from each feature vector, so each feature
vector element has a mean of 0
CMN makes features robust to some linear filtering of the
signal — adds robustness to varying microphones, telephone
channels, etc.
Cepstral Variance Normalization (CVN): Divide feature vector
by standard deviation of feature vectors, so each feature
vector element has a variance of 1
Cepstral mean and variance normalisation, CMN/CVN:

x̂i =
xi − µ(x)
σ(x)

On Aurora-2 CMN/CVN reduces multistyle training WER
from 9.9% to 7.0%
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Feature compensation: Spectral subtraction

Basic idea: Estimate the noise spectrum and subtract it from
the observed spectra

Any feature vector can then be computed from the
noise-subtracted spectrum

Problems:
Need to estimate noise spectrum from a period of non-speech:
requires good speech/non-speech detection
Errors in the noise estimate (perhaps arising from
speech/non-speech separation errors) result in
over-/under-compensation of the spectrum

Low computational cost, widely used in practice

“ETSI adavanced front end” uses spectral subtraction and
CMN

11.4% WER on Aurora-2 (clean models)
6.8% WER on Aurora-2 (multistyle training)
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Feature compensation: SPLICE

Basic idea: Predict the observed clean speech x from the
observed noisy speech y
Estimate a joint mixture model for noisy and clean speech:

p(y, x) =
�

k

p(x|y, k)p(y, k)

p(x|y, k) is a Gaussian component to predict the clean speech
from the noisy speech:

p(x|y, k) = N(x;Ay + b,Σxy )

p(y, k) is a weighted Gaussian component

p(y, k) = N(y;µk ,Σk)P(k)

Train parameters from stereo data: simultaneous clean and
noisy recordings
Can use maximum likelihood or minimum mean square error
objective function
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Model-based compensation

Basic idea: use the detailed acoustic models in the recognizer
as the basis of the compensation scheme

Feature compensation approaches use an additional (simple)
model of the speech signal—at best, a GMM

Model-based compensation: combine the clean-speech models
with a noise model to result in a model of noisy speech

Results in taking the product of clean speech and noise
components: M clean speech components and noise
components result in MN noisy speech components

High computational complexity for noise models more
complex than a single Gaussian

Two important approaches
Parallel model compensation (PMC)
Vector Taylor series (VTS) approximation
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Parallel model combination (PMC)

Basic idea: Assume speech and noise is additive in spectral
domain, so transform models from cepstral to spectral
domain, compute noisy speech model statistics, transform
back to cepstral domain

Assume Gaussian noise model N(µn,Σn)

PMC, using log-normal approximation:
1 Compute speech and noise models in cepstral domain
2 Map to spectral domain using inverse of the DCT and

exponential
3 Combine speech and noise parameters in spectral domain

µf
y = µf

x + µf
n

Σf
y = Σf

x +Σf
n

Even simpler approximation assumes Σy = Σx
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Vector Taylor Series (VTS)

Basic idea: Estimate noisy speech statistics as a Taylor series
expansion about the means of the clean speech and noise
Model the relationship between clean speech, noise and noisy
speech as:

y = x+ g(n− x)

g is a nonlinear function mapping signal to noise ratio to the
difference between clean and noisy speech
Approximate using a first-order Taylor series expansion around
the clean speech and noise means (µx , µn)

y = µx + g(µn − µx) +
∂y
∂x

(x− µx) +
∂y
∂n

(n− µn)

This results in expressions for µy and Σy based on the
statistics (mean and covariance) of clean speech and noise
models
VTS, CMN/CVN and multistyle training results in state of the
art Aurora-2 results: 6.2% WER
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Missing feature approaches

Basic idea: Assume each point in time-frequency plane is
either reliable or unreliable evidence for the speech signal, and
use this reliability to compute likelihoods

Inspired by auditory scene analysis: each time-frequency point
is dominated by energy from just one source

Form a noise mask for those parts dominated by noise, and
treat these as “missing” data for the speech

Adjust the likelihood computation to take account of missing
information

Finding the noise mask:
Use SNR estimates
Use perceptual criteria (harmonics, common onset, etc.)
Train a classifier

Steve Renals Environmental robustness 15

Summary

Feature compensation: cepstral mean/variance normalisation,
spectral subtraction, SPLICE

Model compensation: parallel model compensation, missing
feature approaches

Uncertainty decoding: use direct estimate of p(y | x) in model
compensation
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