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Overview

Today's lecture

@ Recognising speech in presence of additive noise
@ Feature compensation approaches

@ Model compensation approaches
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Additive Noise

@ Multiple acoustic sources are the norm rather than the
exception

@ From the point of view of trying to recognize a single stream
of speech, this is additive noise

@ Stationary noise: frequency spectrum does not change over
time (e.g. air conditioning, car noise at constant speed)

e Non-stationary noise: time-dependent frequency spectrum
(e.g. breaking glass, workshop noise, music, speech)

@ Measure the noise level as SNR (signal-to-noise ratio),
measured in dB

e 30dB SNR sounds noise free
e 0dB SNR has equal signal and noise energy
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Aurora-2

@ Aurora is a standard set of speech + noise databases used in
robust ASR research
@ Aurora-2 speaker-independent continuously spoken strings of
digits (Tl-digits)
e 11 word vocabulary
o Artificially added noise of different types:

@ A: subway, babble, car exhibition
o B: restaurant, street, airport, station
o C: subway, street
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Recognizing Aurora-2 using Clean Speech Models

ASR using clean speech models
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Mismatch between clean and noisy speech
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Multistyle Training

@ Basic idea: Don't train on clean speech, but train on speech
with a similar noise level (and noise type)

@ Matched condition — training in the same noise conditions as
testing — is rarely possible since the test conditions are nearly

always partly unknown
@ Multi-style training — train with speech data in a variety of

noise conditions
@ It is possible to artificially mix recorded noise with clean

speech at any desired SNR to create a multi-style training set
@ Advantage: training data much better matched to test

conditions
o Disadvantage: acoustic model components become less

discriminative and less well matched to the training data
@ Model adaptation — can further reduce errors using an

Recognizing Aurora-2 using Multistyle Training

ASR using Multistyle Training
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adaptation technique such as MLLR




Feature normalization

@ Basic idea: Transform the features to reduce mismatch
between training and test

o Cepstral Mean Normalization (CMN): subtract the mean of
the feature vectors from each feature vector, so each feature
vector element has a mean of 0

@ CMN makes features robust to some linear filtering of the
signal — adds robustness to varying microphones, telephone
channels, etc.

o Cepstral Variance Normalization (CVN): Divide feature vector
by standard deviation of feature vectors, so each feature
vector element has a variance of 1

@ Cepstral mean and variance normalisation, CMN/CVN:

% = xj — p(x)
o (x)
On Aurora-2 CMN/CVN reduces multistyle training WER
from 9.9% to 7.0%

Feature compensation: Spectral subtraction

@ Basic idea: Estimate the noise spectrum and subtract it from
the observed spectra

@ Any feature vector can then be computed from the
noise-subtracted spectrum
@ Problems:

o Need to estimate noise spectrum from a period of non-speech:
requires good speech/non-speech detection

o Errors in the noise estimate (perhaps arising from
speech /non-speech separation errors) result in
over-/under-compensation of the spectrum

@ Low computational cost, widely used in practice
e "ETSI adavanced front end” uses spectral subtraction and

CMN

o 11.4% WER on Aurora-2 (clean models)
e 6.8% WER on Aurora-2 (multistyle training)
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Feature compensation: SPLICE

@ Basic idea: Predict the observed clean speech x from the
observed noisy speech y
@ Estimate a joint mixture model for noisy and clean speech:

p(y,x) =>_ p(xly, k)p(y, k)
k

@ p(x|y, k) is a Gaussian component to predict the clean speech
from the noisy speech:

P(X|Ya k) = N(X; Ay + b, ny)
@ p(y, k) is a weighted Gaussian component

p(y, k) = N(y; i, Zi) P(k)
@ Train parameters from stereo data: simultaneous clean and
noisy recordings
@ Can use maximum likelihood or minimum mean square error
objective function
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Model-based compensation

@ Basic idea: use the detailed acoustic models in the recognizer
as the basis of the compensation scheme

e Feature compensation approaches use an additional (simple)
model of the speech signal—at best, a GMM

@ Model-based compensation: combine the clean-speech models
with a noise model to result in a model of noisy speech

@ Results in taking the product of clean speech and noise
components: M clean speech components and noise
components result in MN noisy speech components

@ High computational complexity for noise models more
complex than a single Gaussian

@ Two important approaches

o Parallel model compensation (PMC)
o Vector Taylor series (VTS) approximation
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Parallel model combination (PMC)

@ Basic idea: Assume speech and noise is additive in spectral
domain, so transform models from cepstral to spectral
domain, compute noisy speech model statistics, transform
back to cepstral domain

@ Assume Gaussian noise model N(u,, X,)

e PMC, using log-normal approximation:

@ Compute speech and noise models in cepstral domain

@ Map to spectral domain using inverse of the DCT and
exponential

© Combine speech and noise parameters in spectral domain

w, = pl+
=% +3]

Even simpler approximation assumes X, = ¥,
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Vector Taylor Series (VTS)

@ Basic idea: Estimate noisy speech statistics as a Taylor series
expansion about the means of the clean speech and noise

@ Model the relationship between clean speech, noise and noisy
speech as:

y=x+g(n—x)

g is a nonlinear function mapping signal to noise ratio to the
difference between clean and noisy speech

@ Approximate using a first-order Taylor series expansion around
the clean speech and noise means (u,, w,)

_ dy dy
y = i, +g(p, — py) + 5(x my) + %(n i)

@ This results in expressions for p, and X, based on the
statistics (mean and covariance) of clean speech and noise
models

e VTS, CMN/CVN and multistyle training results in state of the
art Aurora-2 results: 6.2% WER
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Missing feature approaches

@ Basic idea: Assume each point in time-frequency plane is
either reliable or unreliable evidence for the speech signal, and
use this reliability to compute likelihoods

@ Inspired by auditory scene analysis: each time-frequency point
is dominated by energy from just one source

@ Form a noise mask for those parts dominated by noise, and
treat these as “missing” data for the speech

@ Adjust the likelihood computation to take account of missing
information
e Finding the noise mask:

o Use SNR estimates
o Use perceptual criteria (harmonics, common onset, etc.)
e Train a classifier
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@ Feature compensation: cepstral mean/variance normalisation,
spectral subtraction, SPLICE

@ Model compensation: parallel model compensation, missing
feature approaches

@ Uncertainty decoding: use direct estimate of p(y | x) in model
compensation
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