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Pronunciation dictionary

@ Words and their pronunciations provide the link between
sub-word HMMs and language models

Written by human experts

Typically based on phones

Constructing a dictionary involves
@ Selection of the words in the dictionary—want to ensure high
coverage of words in test data
@ Representation of the pronunciation(s) of each word

Explicit modelling of pronunciation variation
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Out-of-vocabulary (OOV) rate

@ OOV rate: percent of word tokens in test data that are not
contained in the ASR system dictionary

@ Training vocabulary requires pronunciations for all words in
training data (since training requires an HMM to be
constructed for each training utterance)

@ Select the recognition vocabulary to minimize the OOV rate
(by testing on development data)

@ Recogpnition vocabulary may be different to training vocabulary

@ Empirical result: each OOV word results in 1.5-2 extra errors
(>1 due to the loss of contextual information)
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Multilingual aspects

@ Many languages are morphologically richer than English: this
has a major effect of vocabulary construction and language
modelling

o Compounding (eg German): decompose compund words into
constituent parts, and carry out pronunciation and language
modelling on the decomposed parts

@ Highly inflected languages (eg Arabic, Slavic languages):
specific components for modelling inflection (eg factored
language models)

o Inflecting and compounding languages (eg Finnish)

@ All approaches aim to reduce ASR errors by reducing the
OOQV rate through modelling at the morph level; also
addresses data sparsity
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Vocabulary size for different languages
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M. Creutz et al, “Morph-based speech recognition and modeling OOV words across languages”, ACM Trans

Speech and Language Processing, 5(1), art. 3. http://doi.acm.org/10.1145/1322391.1322394
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OOV Rate for di nt languages
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Speech and Language Processing, 5(1), art. 3. http://doi.acm.org/10.1145/1322391.1322394
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Single and multiple pronunciations

@ Words may have multiple pronunciations:

@ Accent, dialect: tomato, zebra
global changes to dictionary based on consistent pronunciation
variations

@ Phonological phenomena: handbag/ h ae m b ae g
| can't stay / [ah k ae n s t ay]

@ Part of speech: project, excuse

@ This seems to imply many pronunciations per word, including:

@ Global transform based on speaker characteristics

@ Context-dependent pronunciation models, encoding of
phonological phenomena

o BUT state-of-the-art large vocabulary systems average about
1.1 pronunciations per word: most words have a single
pronunciation
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Consistency vs Fidelity

@ Empirical finding: adding pronunciation variants can result in
reduced accuracy

@ Adding pronunciations gives more “flexibility” to word models
and increases the number of potential ambiguities—more
possible state sequences to match the observed acoustics

@ Speech recognition uses a consistent rather than a faithful
representation of pronunciations

@ A consistent representation requires only that the same word
has the same phonemic representation (possibly with
alternates): the training data need only be transcribed at the
word level

@ A faithful phonemic representation requires a detailed
phonetic transcription of the training speech (much too
expensive for large training data sets)
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Modelling pronunciation variability

State-of-the-art systems absorb variations in pronunciation in
the acoustic models

@ Context-dependent acoustic models may be though of as
giving broad class representation of word context

@ Cross-word context dependent models can implicitly represent
cross-word phonological phenomena

e Hain (2002): a carefully constructed single pronunciation
dictionary (using most common alignments) can result in a
more accurate system than a multiple pronunciation dictionary
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Mathematical framework

HMM Framework for speech recognition. Let W be the universe of
possible utterances, and X be the observed acoustics, then we
want to find:

w* = argmma/xP(W | X)

P(X | W)P(W)
P(X)

= arg max P(X | W)P(W)

= arg max
& w

Words are composed of a sequence of HMM states Q:

W* = arg max P(X|Q,W)P(Q,W)
:argmvax; P(X | Q)P(Q [ W)P(W)

> arg max max P(X | Q)P(Q | W)P(W)
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Three levels of model

@ Acoustic model P(X | Q)
Probability of the acoustics given the phone states:
context-dependent HMMs using state clustering, phonetic
decision trees, etc.

e Pronunciation model P(Q | W)
Probability of the phone states given the words; may be as
simple a dictionary of pronunciations, or a more complex
model

e Language model P(W)
Probability of a sequence of words. Typically an n-gram
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Language modelling

@ Basic idea The language model is the prior probability of the
word sequence P(W)

@ Use a language model to disambiguate between similar
acoustics when combining linguistic and acoustic evidence
never mind the nudist play / never mind the new display

@ Use hand constructed networks in limited domains
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Finite-state network

Edinburgh

London

@ typically hand-written
@ does not have a wide coverage or robustness
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Statistical language models

Language modelling

@ Basic idea The language model is the prior probability of the
word sequence P(W)
@ Use a language model to disambiguate between similar

acoustics when combining linguistic and acoustic evidence
never mind the nudist play / never mind the new display

@ Use hand constructed networks in limited domains

@ Statistical language models: cover “ungrammatical”
utterances, computationally efficient, trainable from huge
amounts of data, can assign a probability to a sentence
fragment as well as a whole sentence
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@ For use in speech recognition a language model must be:
statistical, have wide coverage, and be compatible with
left-to-right search algorithms

@ Only a few grammar-based models have met this requirement
(eg Chelba and Jelinek, 2000), and do not yet scale as well as
simple statistical models

@ n-grams are (still) the state-of-the-art language model for
ASR

e Unsophisticated, linguistically implausible

e Short, finite context

o Model solely at the shallow word level

o But: wide coverage, able to deal with “ungrammatical”
strings, statistical and scaleable

@ Probability of a word depends only on the identity of that
word and of the preceding n-1 words. These short sequences
of n words are called n-grams.
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Bigram language model

@ Word sequence W = wy, wo, ... wy

P(W) = P(w1)P(wz | w1)P(ws | wy, wa)
cen P(WM | wi, Wo, ... WM,1)
@ Bigram approximation—consider only one word of context:
P(W) ~ P(w1)P(w2 | w1)P(ws | w2) ... P(wy | wim-1)
@ Parameters of a bigram are the conditional probabilities
P(wi | wj)
@ Maximum likelihood estimates by counting:
C(ij Wi)
c(w))
where c(wj, w;) is the number of observations of w; followed

by w;, and c(w;) is the number of observations of w;
(irrespective of what follows)

P(wilw;) ~
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Bigram network

P(one | start of sentence)

P(ticket | one)
P(Edinburgh | one)

Edinburgh ) P(end of sentence | Edinburgh)

@ n-grams can be represented as probabilistic finite state
networks

@ only some arcs (and nodes) are shown for clarity: in a full
model there is an arc from every word to every word

@ note the special start and end sentence probabilities
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The zero probability problem

@ Maximum likelihood estimation is based on counts of words in
the training data

@ If a n-gram is not observed, it will have a count of 0—and the
maximum likelihood probability estimate will be 0

@ The zero probability problem: just because something does
not occur in the training data does not mean that it will not
occur

@ As n grows larger, so the data grow sparser, and the more
zero counts there will be

@ Solution: smooth the probability estimates so that unobserved
events do not have a zero probability

@ Since probabilities sum to 1, this means that some probability
is redistributed from observed to unobserved n-grams
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Smoothing language models

@ What is the probability of an unseen n-gram?
@ Add-one smoothing: add one to all counts and renormalize.
e “Discounts” non-zero counts and redistributes to zero counts
o Since most n-grams are unseen (for large n more types than
tokens!) this gives too much probability to unseen n-grams
(discussed in Manning and Schiitze)
@ Absolute discounting: subtract a constant from the observed
(non-zero count) n-grams, and redistribute this subtracted
probability over the unseen n-grams (zero counts)

@ Kneser-Ney smoothing: family of smoothing methods based
on absolute discounting that are at the state of the art
(Goodman, 2001)
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Backing off

How is the probability distributed over unseen events?

Basic idea: estimate the probability of an unseen n-gram using
the (n-1)-gram estimate

Use successively less context: trigram — bigram — unigram

Back-off models redistribute the probability “freed” by
discounting the n-gram counts

For a bigram

,wj) =D .
P(w; | wj) = C(WJ;(V‘:/J)) if c(wj,w;) > ¢
= P(w;)bw, otherwise

c is the count threshold, and D is the discount. ij is the
backoff weight required for normalization
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