
Speaker Adaptation

Steve Renals

Automatic Speech Recognition— ASR Lecture 11
January-March 2012

ASR Lecture 11 Speaker Adaptation 1

Overview

Speaker Adaptation

Introduction: speaker-specific variation, modes of adaptation

Model-based adaptation: MAP

Model-based adaptation: MLLR

Model-based adaptation: Speaker space models

Speaker normalization: VTLN
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Speaker independent / dependent / adaptive

Speaker independent (SI) systems have long been the focus
for research in transcription, dialogue systems, etc.

Speaker dependent (SD) systems can result in word error
rates 2–3 times lower than SI systems (given the same
amount of training data)

A Speaker adaptive (SA) system... we would like
Error rates similar to SD systems
Building on an SI system
Requiring only a small fraction of the speaker-specific training
data used by an SD system
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Speaker-specific variation

Acoustic model
Speaking styles
Accents
Speech production anatomy (eg length of the vocal tract)

Also non-speaker variation, such as channel conditions
(telephone, reverberant room, close talking mic) and
application domain
Speaker adaptation of acoustic models aims to reduce the
mismatch between test data and the models

Pronunciation model: speaker-specific, consistent change in
pronunciation

Language model: user-specific documents (exploited in
personal dictation systems)

ASR Lecture 11 Speaker Adaptation 4



Modes of adaptation

Supervised or unsupervised
Supervised: the word level transcription of the adaptation data
is known (and HMMs may be constructed)
Unsupervised: the transcription must be estimated (eg using
recognition output)

Static or dynamic
Static: All adaptation data is presented to the system in a
block before the final system is estimated (eg as used in
enrollment in a dictation system)
Dynamic: Adaptation data is incrementally available, and
models must be adapted before all adaptation data is available
(eg as used in a spoken dialogue system)
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Approaches to adaptation

Model based: Adapt the parameters of the acoustic models to
better match the observed data

Maximum a posteriori (MAP) adaptation of HMM/GMM
parameters
Maximum likelihood linear regression (MLLR) of Gaussian
parameters

Speaker Normalization: Normalize the acoustic data to reduce
mismatch with the acoustic models

Vocal Tract Length Normalization (VTLN)

Speaker space: Estimate multiple sets of acoustic models,
characterizing new speakers in terms of these model sets

Cluster-adpative training
Eigenvoices
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Adaptation and normalization of acoustic models
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Model-based adaptation: The MAP family

Basic idea Use the SI models as a prior probability distribution
over model parameters when estimating using speaker-specific
data

Theoretically well-motivated approach to incorporating the
knowledge inherent in the SI model parameters

If the parameters of the models are denoted λ, then maximum
likelihood (ML) training chooses them to maximize p(X | λ)
Maximum a posteriori (MAP) training maximizes:

p(λ | X) ∝ p(X | λ)p0(λ)

p0(λ) is the prior distribution of the parameters

The use of a prior distribution, based on the SI models, means
that less data is required to estimate the speaker-specific
models: we are not starting from complete ignorance
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Refresher: ML estimation of GMM/HMM

The mean of the mth Gaussian component of the jth state is
estimated using a weighted average

µmj =

�
n γjm(n)xn�
n γjm(n)

Where
�

n γjm(n) is the component occupation probability

The covariance of the Gaussian component is given by:

Σmj =

�
n γjm(n)(xn − µjm)(xn − µjm)

T

�
n γjm(n)
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MAP estimation

What is p0(λ)?

Conjugate prior: the prior distribution has the same form as
the posterior. There is no simple conjugate prior for GMMs,
but an intuitively understandable approach may be employed.

If the prior mean is µ0, then the MAP estimate for the
adapted mean µ̂ of Gaussian is given by:

µ̂ =
τµ0 +

�
n γ(n)xn

τ +
�

n γ(n)

τ is a hyperparameter that controls the balance between the
ML estimate of the mean, its prior value. Typically τ is in the
range 2–20
xn is the adaptation vector at time n
γ(n) the probability of this Gaussian at this time

As the amount of training data increases, so the MAP
estimate converges to the ML estimate
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Local estimation

Basic idea The main drawback to MAP adaptation is that it is
local

Only the parameters belonging to Gaussians of observed
states will be adapted

Large vocabulary speech recognition systems have about 105

Gaussians: most will not be adapted
Structural MAP (SMAP) approaches have been introduced to
share Gaussians
The MLLR family of adaptation approaches addresses this by
assuming that transformations for a specific speaker are
systematic across Gaussians, states and models

MAP adaptation is very useful for domain adaptation:
Example: adapting a conversational telephone speech system
(100s of hours of data) to multiparty meetings (10s of hours of
data) works well with MAP
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SMAP: Structural MAP

Basic idea share Gaussians by organising them in a tree,
whose root contains all the Gaussians

At each node in the tree compute mean offset and diagonal
variance scaling term

For each node, its parent is used as a prior distribution

This has been shown to speed adaptation compared with
standard MAP, while converging to the same solution as
standard MAP in the large data limit
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The Linear Transform family

Basic idea Rather than directly adapting the model
parameters, estimate a transform which may be applied the
Gaussian means and covariances

Linear transform applied to parameters of a set of Gaussians:
adaptation transform parameters are shared across Gaussians

This addresses the locality problem arising in MAP
adaptation, since each adaptation data point can affect many
of (or even all) the Gaussians in the system

There are relatively few adaptation parameters, so estimation
is robust

Maximum Likelihood Linear Regression (MLLR) is the best
known linear transform approach to speaker adaptation
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Interim Summary

Speaker-specific variation

Adaptation: supervised/unsupervised, static/dynamic

Model-based adaptation: MAP

Introduction to model-based adaptation

Next lecture: MLLR, adaptive training, speaker space models
and vocal tract length normalisation
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Overview

Speaker Adaptation

Introduction: speaker-specific variation, modes of adaptation

Model-based adaptation: MAP and MLLR

Adaptive training

Model-based adaptation: Speaker space models

Speaker normalization: VTLN

ASR Lecture 12 Speaker Adaptation 2 16



The Linear Transform family

Basic idea Rather than directly adapting the model
parameters, estimate a transform which may be applied the
Gaussian means and covariances

Linear transform applied to parameters of a set of Gaussians:
adaptation transform parameters are shared across Gaussians

This addresses the locality problem arising in MAP
adaptation, since each adaptation data point can affect many
of (or even all) the Gaussians in the system

There are relatively few adaptation parameters, so estimation
is robust

Maximum Likelihood Linear Regression (MLLR) is the best
known linear transform approach to speaker adaptation
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MLLR: Maximum Likelihood Linear Regression

MLLR is the best known linear transform approach to speaker
adaptation

Affine transform of mean parameters

µ̂ = Aµ+ b

If the observation vectors are d-dimension, then A is a d × d
matrix and b is d-dimension vector

If we define W = [bA] and η = [1µT ]T , then we can write:

µ̂ = Wη

In MLLR, W is estimated so as to maximize the likelihood of
the adaptation data

A single transform W can be shared across a set of Gaussian
components (even all of them!)
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Regression classes

The number of transforms may obtained automatically

A set of Gaussian components that share a transform is called
a regression class

Obtain the regression classes by constructing a regression
class tree

Each node in the tree represents a regression class sharing a
transform

For an adaptation set, work down the tree until arriving at the
most specific set of nodes for which there is sufficient data

Regression class tree constructed in a similar way to state
clustering tree

In practice the number of regression may be very small: one
per context-independent phone class, one per broad class, or
even just two (speech/non-speech)
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Estimating the transforms

The linear transformation matrix W is obtained by finding its
setting which optimizes the log likelihood

Mean adaptation: Log likelihood

L =
�

r

�

n

γr (n) log

�
Kr exp

�
−1

2
(xn −Wηr )

TΣ−1
r (xn −Wηr )

��

where r ranges over the components belonging to the
regression class

Differentiating L and setting to 0 results in an equation for
W: there is no closed form solution if Σ is full covariance; can
be solved if Σ is diagonal (but requires a matrix inversion)

Variance adaptation is also possible

See Gales and Woodland (1996), Gales (1998) for details
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MLLR in practice

Mean-only MLLR results in 10–15% relative reduction in WER

Few regression classes and well-estimated transforms work
best in practice

Robust adaptation available with about 1 minute of speech;
performance similar to SD models available with 30 minutes
of adaptation data

Such linear transforms can account for any systematic (linear)
variation from the speaker independent models, for example
those caused by channel effects.
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Constrained MLLR (cMLLR)

Basic idea use the same linear transform for both mean and
covariance

µ̂ = A�µ− b�

Σ̂ = A�ΣA�T

No closed form solution but can be solved iteratively

Log likelihood for cMLLR

L = N (Axn + b;µ,Σ) + log(|A|) A� = A−1 ; b� = Ab

Equivalent to applying the linear transform to the data!

Iterative solution amenable to online/dynamic adaptation, by
using just one iteration for each increment

Similar improvement in accuracy to standard MLLR
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Speaker-adaptive training (SAT)

Basic idea Rather than SI seed (canonical) models, construct
models designed for adaptation

Estimate parameters of canonical models by training MLLR
mean transforms for each training speaker

Train using the MLLR transform for each speaker; interleave
Gaussian parameter estimation and MLLR transform
estimation

SAT results in much higher training likelihoods, and improved
recognition results

But: increased training complexity and storage requirements

SAT using cMLLR, corresponds to a type of speaker
normalization at training time
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Speaker Space Methods

Gender-dependent models: sets of HMMs for male and for
female speakers

Speaker clustering: sets of HMMs for different speaker clusters

Drawbacks:
Hard division of speakers into groups
Fragments training data

Weighted speaker cluster approaches which use an
interpolated model to represent the current speaker

Cluster-adaptive training
Eigenvoices
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Cluster-adaptive training

Basic idea Represent a speaker as a weighted sum of speaker
cluster models

Different cluster models have shared variances and mixture
weights, but separate means

For a new speaker, mean is defined as

µ =
�

c

λcµc

Given the canonical models, only the λc mixing parameters
need estimated for each speaker

Given sets of weights for individual speakers, means of the
clusters may be updated

CAT can reduce WER in large vocabulary tasks by about
4–8% relative

See Gales (2000) for more
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Eigenvoices

Basic idea Construct a speaker space from a set of SD HMMs

Could regard each canonical model as forming a dimension of
speaker space

Generalize by computing PCA of sets of “supervectors”
(concatenated mean vectors), to form speaker space: each
dimension is an “eigenvoice”

Represent a new speaker as a combination of eigenvoices

Close relation to CAT

Computationally intensive, does not scale well to large
vocabulary systems

See Kuhn et al (2000) for more
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Feature normalization

Basic idea: Transform the features to reduce mismatch
between training and test
Cepstral Mean Normalization (CMN): subtract the avergae
feature value from each feature, so each feature has a mean
value of 0. makes features robust to some linear filtering of
the signal (channel variation)
Cepstral Variance Normalization (CVN): Divide feature vector
by standard deviation of feature vectors, so each feature
vector element has a variance of 1
Cepstral mean and variance normalisation, CMN/CVN:

x̂i =
xi − µ(x)
σ(x)

Compute mean and variance statistics over longest available
segments with the same speaker/channel
Real time normalisation: compute a moving average
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Vocal Tract Length Normalization (VTLN)

Basic idea Normalize the acoustic data to take account of
changes in vocal tract length

Vocal tract length (VTL):
First larynx descent in first 2-3 years of life
VTL grows according to body size, and is sex-dependent
Puberty: second larynx descent for males

VTL has large effect on the spectrum
Tube acoustic model: formant positions are inversely
proportional to VTL
Observation: formant frequencies for women are 20% higher
than for men (on average)

VTLN: compensate for differences between speakers via a
warping of the frequency axis
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Warping functions: Piecewise linear

!=1.2

!=1.0

!=0.8

f̂ = αf
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Warping functions: Power function

f̂ = α3f /8000f
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Warping functions: Power function

f̂ = f + arctan
(1− α) sin f

1− (1− α) cos f
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Approaches to VTLN

f → f̂ = gα(f )

Classify by frequency warping function
Piecewise linear
Power function
Bilinear transform

Classify by estimation of warping factor α
Signal-based: estimated directly from the acoustic signal,
through explicit estimation of formant positions
Model-based: maximize the likelihood of the observed data
given acoustic models and a transcription. α is another
parameter set so as to maximize the likelihood

ASR Lecture 12 Speaker Adaptation 2 32



Signal-based VTLN

Basic idea Estimate the warping factor from the signal
without using the speech recognition models

Estimate warping factor α from formant positions: eg Eide
and Gish (1996) used ratio of median position of 3rd formant
for speaker s (F̄3,s) to the median for all speakers (F̄3):

αs =
¯F3,s
F̄3

Wegmann et al (1996) used a generic voiced speech model,
estimated using maximum likelihood. During training,
estimation of warping factors was alternated with estimating
the phone models using the warped data

These approaches require an accurate estimation of voiced
parts of the speech signal
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Model-based VTLN

Basic idea Warp the acoustic features (for a speaker) to
better fit the models — rather than warping the models to fit
the features!

Estimate the warping factor α so as to maximise the
likelihood of the acoustic models

After estimating the warp factors, normalize the acoustic data
and re-estimate the models

The process may be iterated

Model-based VTLN does not directly estimate vocal tract
size, rather it estimates an optimal frequency warping, which
may be affected by other factors (eg F0)

Exhaustive search for the optimal warping factor would be
expensive

Approximate the log likelihood wrt α as a quadratic, and find
the maximum using a line search (Brent’s method)
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Model-based VTLN
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VTLN: Training

Speaker warping factor estimation
Computation of normalised features

HMM Training 
using normalised features

HMM(0)

HMM(i)

repeat until
WER is stable 
on dev data

ML estimation of warp factors:
based on quadratic estimate

of log likelihood (Brent search)
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VTLN: Recognition

Decode using 
non-normalized features and models

Evaluate warping factors using 
normalized models and 

preliminary transcription

Decode using 
normalized models and features

Preliminary
transcription
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VTLN: Warp factor estimation, females, non-normalized
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VTLN: Warp factor estimation, females, pass 1
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VTLN: Warp factor estimation, females, pass 2
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VTLN: Warp factor estimation, females, pass 3

ASR Lecture 12 Speaker Adaptation 2 41

VTLN: Warp factor estimation, males, non-normalized
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VTLN: Warp factor estimation, males, pass 1
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VTLN: Warp factor estimation, males, pass 2
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VTLN: Warp factor estimation, males, pass 3
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VTLN: WER (%) on conversational telephone speech

Tot Sub Del Ins F M
No adapt 37.2 24.2 8.8 4.2 36.7 37.6
Test only 36.4 23.6 8.5 4.3 36.1 36.7

1 pass 35.7 22.9 8.9 3.8 35.0 36.4
2 pass 35.0 22.5 8.8 3.7 34.2 35.8
3 pass 34.5 22.0 8.7 3.7 33.6 35.3
4 pass 34.2 22.0 8.6 3.6 33.3 35.1

7–10% relative decrease in WER is typical for VTLN

VTLN removes the need for gender-dependent acoustic
models
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Summary

Speaker Adaptation

One of the most intensive areas of speech recognition research
since the early 1990s

Substantial progress, resulting in significant, additive,
consistent reductions in word error rate

Close mathematical links between different approaches

Linear transforms at the heart of many approaches
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Reading

Gales and Young (2007), sec. 5. Good overview.

Woodland (2001). Review paper.

Gales (1998). Best overview of the MLLR family.

Garau et al (2005). VTLN (for meetings speech).

Kuhn et al (2000). Eigenvoices.
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