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Feature parameters for ASR

Features should
m contain sufficient information to distinguish phonemes /
phones

m good time-resolutions [e.g. 10ms]
m good frequency-resolutions [e.g. 20 channels/Bark-scale]

m not contain (or be separated from) £ and its harmonics
m be robust against speaker variation
m be robust against noise / channel distortions
m have good characteristics in terms of pattern recognition
m The number of features is as few as possible
m Features are independent of each other

= A large number of features have been proposed
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Signal Analysis for ASR

Front-end analysis
Convert acoustic signal into a sequence of feature vectors

A/D Pre— | XNl | Spectral analysis
x{t) LPF ™1 conversion| | emphasis Feature extraction cnlkl
A

(low—pass filter) ! ) m: frame number
I

| k: feature index

Sampling frequency Analysi§ window
Frame-shift
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Converting analogue signals to machine
readable form

m Discretisation (digitising) z.(t) — z[n]
m continuous time =- discrete time
m continuous amplitude =-discrete amplitude
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Sampling of continuous-time signals

s(t) :
‘ i Ts ;
Conversion from
Xc(t) % impulse train to = X[n]
discrete—time sequence |

s(t)

—~ mm 1111]]

t

t

Ts

m Continuous-time signal: z.(t)
m Modulated signal by a periodic impulse train:

xs(t) = 2.(t) Zét—nT :Zxch (t — nTy)

n=—00

m Sampled signal: z[n| = x4(nT;) --- discretetimesignal

T, : Samplinginterval
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Sampling of continuous-time signhalscon. 3

Q: Isthe C/D conversion invertible ?

zo(t) LB afn] 28 212
A: “No” in general, but
“Yes” under a special condition:
“Nyquist sampling theorem”

If z.(t) is band-limited (i.e. no frequency components > F/2),
then z.(t) can be fully reconstructed by z[n].

zo(t) = hr,(t)« Y x[k]o(t — kT = Y wlk]hr,(t — kT.)
k=—o0 ft
hr, (1) = sinc(t/T,) = 45712

F,/2: Nyquist Frequency, F, =1/T,: Sampling Frequency
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Sampling of continuous-time signalscon. 2

Q: Isthe C/D conversion invertible ?

C/ID D/IC
—

x(t) z[n] — z.(t)?
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Sampling of continuous-time signalscon. 4

Interpretation in frequency domain:
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Sampling of continuous-time signalscon. 5

A/D Pre— | XInl | Spectral analysis
x{0) LPF ™= conversion| ~| emphasis Feature extraction cnlkl
A

(low—pass filter) m: frame number

k: feature index

Sampling frequency Analysi§ window
Frame-shift

Questions

1. What sampling frequencies (F}) are used for ASR ?
m microphone voice: 12kHz ~ 20kHz
m telephone voice: ~ 8kHz

2. What are the advantages / disadvantages of using higher
Fy?

3. Why is pre-emphasis (+6dB/oct.) employed?

zn] = xo[n] — axgln — 1], a=0.95~0.97
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An interpretation of FT

Inner product between two vectors (Linear Algebra)
m 2-dimensional case
a = (611, az)t
b = (b1, by)
a-b=ab= a1by + asby
=l all bl cost b g
o . 0 7 |bll=1
m Infinite-dimensional case —_"||al| cos®
x = {an]}=, B

e, 2 {ejwn}i"oo = {cos(wn) + jsin(wn)}>

o0

an,

A e
= COoS,, + JSsIn,,

X(e) = i z[nje " = - /" = x - cos, + jx - sin,

X - CoS,, . proportion of how much cos,, component is contained in x
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Spectral analysis: Fourier Transform

m FT for continuous-time signals (& continuous-frequency)

XC(Q) = /OC xc(t)eijmdt (time domain — freq. domain)
$C(t) = % h XC(Q)ethdQ (freg. domain — time domain)

m FT for discrete-time signals (& continuous-frequency)
X(e¥) = i z[n]e 7"

n=—00

zn] = % ;X(ej“’)ej“"dw
|X(e™)|? --- Power spectrum
log| X (e™)|?> --- Log power spectrum

where w=2xf, f=1/T, w="TQ,
e~ " = cos(wn) + jsin(wn), j: theimaginary unit
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Short-time Spectrum Analysis

Problem with FT

m Assuming signals are stationary:
signal properties do not change over time
m If signals are non-stationary
= loses information on time varying features

= Short-time Fourier transform (STFT)
(Time-dependent Fourier transform)

4

Divide signals into short-time segments (frames) and
apply FT to each frame.
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Short-time Spectrum AnalySiSco 2
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The Effect of Windowing in STFT

Time domain:
yi[n] = wg[n]z[n], win] : time-window for k-th frame
Simply cutting out a short segment (frame) from z[n] implies
applying a rectangular window on to z[n].
= causes discontinuities at the edges of the segment.

Instead, a tapered window is usually used.. e.g. Hamming (o =
0.46164) or Hanning (o = 0.5) window)

21l _ _
wll] = (1 —a) — acos (N—l) N : window width

rectangle Hamming Hanning Blackman Bartlett

ASR (H. Shimodaira) 1:18

Short-time Spectrum AnalySiScot 3

m Trade-off problem of short time spectrum analysis

window width
short — long
frequency resolution /!
time resolution AV

=- a compromise:

window width (frame width): 20 ~ 30 ms
window shift (frame shift): 5~ 15ms
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The Effect of Windowing in STFT o 2

Frequency domain:
, 1 [T , ,
Yi(e!) = 2—/ Wk(eje)X(ej(wfe))dQ - -+ Periodic convolution
™ -

m Power spectrum of the frame is given as a periodic convolu-
tion between the power spectra of z[n] and wy[n].

m If we want Y, (e/¥) = X (e/¥), the necessary and sufficient
condition for this is W (e/*) = §(w),
i.e. wi[n] = F~14(w) = 1, which means the length of wy[n] is
infinite.
=- there is no window function of finite length that causes no
distortion.

ASR (H. Shimodaira) 1:19




The Effect of Windowing in STFT o 3

Spectral analysis of two sine signals of close frequencies
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Cepstrum Analysis

Idea: split(deconvolve) the power spectrum into spectrum envelope and £, harmonics.

‘ ‘ ‘ L og-spectrum [freq. domain]

2f Log X (w)l —

10 b

s ]

6 -
E ) ) 1 | Inverse Fourier Transform
0

IS

§;§ "Cepstrum —— 1 Cepstrum [time domain] (quefrency)

o) 9

0. 1

o ] | Liftering to get low/high part

8;% [V T (lifter: fi lter used in cepstral domain)
0 50 100 150 200 250 | Fourier Transform

2} ' " Envelope (Lag=30) —— 1 .

101 , Smoothed-spectrum [freq. domain]

Z r J (low-part of cepstrum)

AL L L L L |
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L og-spectrum of high-part of cepstrum
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Problems with STFT

m The estimated power spectrum contains harmonics of Fj,
which makes it difficult to estimate the envelope of the spec-
trum.

m Frequency bins of STFT are highly correlated each other, i.e.
power spectrum representation is highly redundant.

Log X(w)] ——
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Cepstrum Analysiscot 2

hln] : vocal tract
v[n]: glottal sounds

x[n] = hln] * v[n]
| F (Fourier transform)
X(e™) = H(e)V(e™)
Log spectrum 1 log
log | X ()| = log |H (e log |V (e
og|X(e)] = log|H(e"™)| +  log|V(e!)]
(spectral envelope) (spectral fine structure)
Cepstrum 1 F1
c(r)=F1 {log |X(ej“)]}
= F {log |H(e™)|} + F ' {log|V(e/)[}
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LPC Analysis

Linear Predictive Coding (LPC):
a model-based / parametric spectrum estimation

Assume a “linear system” for human speech production

sound source x[n| = |vocal tract| = speech y[n]

—> yln h[n] : impulse response
ylnl = =3 hlk

k=0
Using a model enables us to
m estimate a spectrum of vocal tract from small amount of ob-
servations

m represent the spectrum with a small number of parameters
m synthesise speech with the parameters
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Spectrum estimated by FT & LPC

magnitute (dB)

0 50 100 150 200 250

magnitute (dB)

Normalized frequency [omega/pi]
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LPC analysis in detail
Predict y[n] from y[n — 1], y[n — 2], - - -

= 3wl — K

e[n] = yln] — gln Z aryln — k] - - prediction error

Optimisation problem

Find {a;} that minimises the mean square (MS) error:

P.=FE{e’n]} =E <y[n} - g: apy[n — k])

{ar} 1 LPC coefficents
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LPC summary

m Spectrum can be modelled/coded with around 14LPC'’s.
m LPC family

m PARCOR (Partial Auto-Correlation Coefficient)

m LSP (Line Spectral Pairs) / LSF (Line Spectrum Fre-
quencies)

m CSM (Composite Sinusoidal Model)

m LPC can be used to predict log-area ratio coefficients loss-
less tube model

m LPC-(Mel)Cepstrum: LPC based cepstrum.
m Drawback:

m LPC assumes AR model which does not suit to model
nasal sounds that have zeros in spectrum.
m Difficult to determine the prediction order V.
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Taking into Perceptual Attributes

Physical quality Perceptual quality

Intensity Loudness
Fundamental frequency Pitch
Spectral shape Timbre
Onset/offset time Timing
Phase difference in binaural hearing Location

Technical terms
m equal-loudness contours
m masking
m auditory filters (critical-band filters)
m critical bandwidth
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Taking into Perceptual Attributescon 3

Non-linear frequency scale
m Bark scale
b(f) = 13 arctan(0.00076 f) + 3.5 arctan(( f/7500)%)  [Bark]
m Mel scale
B(f) =1125In(1 + f/700)

Bark frequency [Bark]

warped normalized frequency

L L L L L L
0 2000 4000 6000 8000 10000 12000 14000

. . . . . .
0 2000 4000 6000 8000 10000 12000
linear frequency [Hz]

linear frequency [Hz]
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Taking into Perceptual Attributescon. 2

Fletcher-Iumson Free Field Equel Loudress Cortors
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Filter Bank Analysis

Bandpass
Filter 1 [ %N
Speech .
x[n] *
Bandpass
Filter k| [N
W, W, W, Wy

perceptual scale

M;—1

zi[n] = hi[n] * x[n] = > hi[k]z[n — K]
k=0
hi[n]: Impulse response of Bandpassfi Iter
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Filter Bank AnalySisS o 2

MFCC
MFCC: Mel-frequency Cepstrum Coefficients c¢[n]

Bandpass +| Nonlinearit .| Lowpass Down .
Fiter 1|, 1nj Y ] Filter [, rnj|__Sampling e
' . . ' -Trequen
Speech : | : . DET 9 fi Itere(l.?)ankCy DCT
x[n] : e © z[n] — X[k — [X[K]| —  log[S[m]| — c[n]
Bandpass _L Nonlinearity Lowpass sDown .
Filter K [x, [n] ] Filter y[n]|__Sampling N .
"""""""""" el DCT: ¢[n] = \/%Z s[i] cos <77m(zN 05)) ,  where s[i] = log |S]i]|
Y =i
0 ——a x o @ m MFCCs are widely used in HMM-based ASR systems.
Trade-off problem m The first 12 MFCCs (c[1] ~ ¢[12]) are generally used.
Freg. resolution|# of fi Iterslength of fi Iter Time resolution
/ / / N\
N\ N N\ /
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Filter Bank AnalySiSon.3 MFCCon 2

Another implementation: apply a mel-scale filter bank to STFT
power spectrum to obtain mel-scale power spectrum

DFT(STFT) power spectrum

‘ —= Frequency bins

Triangular band—pass filters

Mel-scale power spectrum
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m MFCCs are less correlated each other than DCT/Filter-bank
based spectrum.

m Good compression rate.

Feature dimensionality / frame

Speech wave 400

DCT Sepctrum 64 ~ 256

Filter-bank 10 ~ 20

MFCC 12
where F, = 16kH z, frame-width = 25ms, frame-shift = 10ms
are assumed.

m MFCCs show better ASR performance than filter-bank fea-
tures, but MFCCs are not robust against noises.
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Perceptually-based Linear Prediction (PLP)

SPEECH [Hermansky, 1985,1990]

Fourier
Transform

Magnitude
Squared

Critical-Band | veee .
Integration ! M(\ /><\ '

Equal Loudness

reemphasis
IEterasity to
oudnéss .
Compression PL; had been shown experimentally
Inverse tobe ,
Fourier ® morenoiserobust
Transform m more speaker independent
Linear Prediction than MFCCs
PLP
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Using temporal features: dvnamic features

In SP lab-sessions on speech recognition using HTK,
m MFCCs, and energy

m A MFCCs, A energy
m A? MFCCs, A? energy

= Ax, A% :  delta features
(dynamic features / time derivatives) [Furui, 1986]

continuous time | discrete time
c(t) c[n]
d(t) = dfl(tt) Ac[n] i w; ¢[n + 1]
Ae(t o
A(t) = dct(Q) A%n] | 3 w; Acln + 1]
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Other features with low dimensionality

m Formants (Fy, Fy, Iy, - )

They are not used in modern ASR systems, but why ?
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Using temporal features: dvnamic feature5<com. 2)

c(t)
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Using temporal features: dvn amic featureS<com. 3)

time time

S U M MA RY(cont. 2)

m Front-end analysis has a great influence on ASR performance.

m For robust ASR in real environments, various techniques for
front-end processing have been proposed. e.g. spectral sub-
traction (SS), cepstral mean normalisation (CMN)

m Do not believe what you’ve got in spectral analysis.

You are not seeing the true one.
You are looking at speech signals / features through a

m An acoustic feature vector, eg MFCCs, representing part of a speech signal is highly pin hole
correlated with its neighbours. )
HMM based ic model herei d d b heob i . Sampled
] acoustic models assume thereis no dependency between the obser vations. = windowed
m Those correlations can be captured to some extent by augmenting the original set of
static acoustic features, eg. MFCCs, with dynamic features.
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SUMMARY References

m Nyquist Sampling theory
m Short-time Spectrum Analysis
= Non-parametric method
e Short-time Fourier Transform
e Cepstrum, MFCC
e Filter bank
m Parametric methods
e LPC,PLP
m Windowing effect: trade-off between time and frequency
resolutions
m Dynamic features (delta features)
m There is no best feature that can be used for any purposes,
but MFCC is widely used for ASR and TTS.
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m John N. Holmes, Wendy J. Holmes, ”Speech Synthe-
sis and Recognition”, Taylor and Francis (2001), 2nd
edition (chapter 2, 4, 10)
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http://cslu.cse.ogi.edu/HLTsurvey/

B. Gold, N. Morgan, ”Speech and Audio Signal Processing:
Processing and Perception of Speech and Music”, John Wi-
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m “Spoken language processing: a guide to theory, algorithm,
and system development”, Xuedong Huang, Alex Acero and
Hsiao-Wuen Hon, Prentice Hall (2001). isbn: 0130226165
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