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Overview

Words

The lexicon

Pronunciation dictionary
Out-of-vocabulary rate
Pronunciation modelling

Language modelling

n-gram language models
The zero probability problem and smoothing
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Pronunciation dictionary

Words and their pronunciations provide the link between
sub-word HMMs and language models

Written by human experts

Typically based on phones

Constructing a dictionary involves
1 Selection of the words in the dictionary—want to ensure high

coverage of words in test data
2 Representation of the pronunciation(s) of each word

Explicit modelling of pronunciation variation
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Out-of-vocabulary (OOV) rate

OOV rate: percent of word tokens in test data that are not
contained in the ASR system dictionary

Training vocabulary requires pronunciations for all words in
training data (since training requires an HMM to be
constructed for each training utterance

Select the recognition vocabulary to minimize the OOV rate
(by testing on development data)

Recognition vocabulary may be different to training vocabulary

Empirical result: each OOV word results in 1.5–2 extra errors
(>1 due to the loss of contextual information)
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Multilingual aspects

Many languages are morphologically richer than English: this
has a major effect of vocabulary construction and language
modelling

Compounding (eg German): decompose compund words into
constituent parts, and carry out pronunciation and language
modelling on the decomposed parts

Highly inflected languages (eg Arabic, Slavic languages):
specific components for modelling inflection (eg factored
language models)

Inflecting and compounding languages (eg Finnish)

All approaches aim to reduce ASR errors by reducing the
OOV rate through modelling at the morph level; also
addresses data sparsity
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Vocabulary size for different languages
3:18 • M. Creutz et al.
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Fig. 7. Vocabulary growth curves for different languages: For growing amounts of text (word
tokens), the numbers of unique different word forms (word types), occurring in the text are plotted.

3.3 Word Models, Vocabulary Growth, and Spontaneous Speech

To improve the word models, one could attempt to increase the vocabulary
(recognition lexicon) of these models. A high coverage of the vocabulary of the
training set might also reduce the OOV rate of the recognition data (test set).
However, this may be difficult to obtain.

Figure 7 shows the development of the size of the training set vocabulary
for growing amounts of training data. The corpora used for Finnish, Estonian,
and Turkish are the datasets used for training language models (mentioned in
Section 3.1.2). For comparison, a curve for English is also shown; the English
corpus consists of text from the New York Times magazine. While there are
fewer than 200,000 different word forms in the 40-million word English cor-
pus, the corresponding values for Finnish and Estonian corpora of the same
size exceed 1.8 million and 1.5 million words, respectively. The rate of growth
remains high as the entire Finnish LM training data of 150 million words (used
in Fin4) contains more than 4 million unique word forms. This value is thus ten
times the size of the (rather large) word lexicon currently used in the Finnish
experiments.

Figure 8 illustrates the development of the OOV rate in the test sets for
growing amounts of training data. That is, assuming that the entire vocabulary
of the training set is used as the recognition lexicon, the words in the test set
that do not occur in the training set are OOVs. The test sets are the same as
used in the speech recognition experiments, and for English, a held-out subset
of the New York Times corpus was used. Again, the proportions of OOVs are
fairly high for Finnish and Estonian; at 25 million words, the OOV rates are
3.6% and 4.4%, respectively (compared with 1.7% for Turkish and only 0.74%

ACM Transactions on Speech and Language Processing, Vol. 5, No. 1, Article 3, Publication date: December 2007.

M. Creutz et al, “Morph-based speech recognition and modeling OOV words across languages”, ACM Trans

Speech and Language Processing, 5(1), art. 3. http://doi.acm.org/10.1145/1322391.1322394
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OOV Rate for different languages
Morph-Based Speech Recognition • 3:19
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Fig. 8. For growing amounts of training data, development of the proportions of words in the test
set that are not covered by the training set.

for English). If the entire 150-million word Finnish corpus were to be used (i.e.,
a lexicon containing more than 4 million words), the OOV rate for the test set
would still be 1.5%.

Not surprisingly, the feasibility of the use of high-coverage standard word
lexicons for Finnish and Estonian is low. In light of the plots in Figures 7 and 8,
word lexicons might, however, be an option for Turkish. The slower vocabulary
growth for Turkish is likely due to the much lower number of compound words
in Turkish in comparison to Finnish and Estonian. Word lexicons are the state-
of-the-art solution for English.

3.3.1 Egyptian Arabic. The vocabulary growth and OOV curves for Arabic
are not visible in Figures 7 and 8 because of the small amount of Arabic data
available (164,000 words). However, Figures 9 and 10 provide a close-up of the
first 164,000 words, including Arabic. The datasets shown in Figures 7 and 8 all
consist of planned, written text, whereas the ECA corpus contains unplanned,
transcribed spontaneous speech. Because of these differences, the type of text
(planned or spontaneous) has been indicated explicitly in the new figures.

Additional sources have been provided for Arabic and English: planned
Arabic text from the FBIS corpus of Modern Standard Arabic (a collection of
transcribed radio newscasts from various radio stations in the Arabic-speaking
world) as well as spontaneous transcribed English telephone conversations
from the Fisher corpus.3 The point here is to illustrate that a smaller, slower
growing vocabulary is used in spontaneous speech than in planned speech.

3Available at http://www.ldc.upenn.edu/.

ACM Transactions on Speech and Language Processing, Vol. 5, No. 1, Article 3, Publication date: December 2007.

M. Creutz et al, “Morph-based speech recognition and modeling OOV words across languages”, ACM Trans

Speech and Language Processing, 5(1), art. 3. http://doi.acm.org/10.1145/1322391.1322394
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Single and multiple pronunciations

Words may have multiple pronunciations:
1 Accent, dialect: tomato, zebra

global changes to dictionary based on consistent pronunciation
variations

2 Phonological phenomena: handbag/ h ae m b ae g
I can’t stay / [ah k ae n s t ay]

3 Part of speech: project, excuse

This seems to imply many pronunciations per word, including:
1 Global transform based on speaker characteristics
2 Context-dependent pronunciation models, encoding of

phonological phenomena

BUT state-of-the-art large vocabulary systems average about
1.1 pronunciations per word: most words have a single
pronunciation
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Consistency vs Fidelity

Empirical finding: adding pronunciation variants can result in
reduced accuracy

Adding pronunciations gives more “flexibility” to word models
and increases the number of potential ambiguities—more
possible state sequences to match the observed acoustics

Speech recognition uses a consistent rather than a faithful
representation of pronunciations

A consistent representation requires only that the same word
has the same phonemic representation (possibly with
alternates): the training data need only be transcribed at the
word level

A faithful phonemic representation requires a detailed
phonetic transcription of the training speech (much too
expensive for large training data sets)
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Modelling pronunciation variability

State-of-the-art systems absorb variations in pronunciation in
the acoustic models

Context-dependent acoustic models may be though of as
giving broad class representation of word context

Cross-word context dependent models can implicitly represent
cross-word phonological phenomena

Hain (2002): a carefully constructed single pronunciation
dictionary (using most common alignments) can result in a
more accurate system than a multiple pronunciation dictionary
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Mathematical framework

HMM Framework for speech recognition. Let W be the universe of
possible utterances, and X be the observed acoustics, then we
want to find:

W ∗ = arg max
W

P(W | X )

= arg max
W

P(X |W )P(W )

P(X )

= arg max
W

P(X |W )P(W )

Words are composed of a sequence of HMM states Q:

W ∗ = arg max
W

P(X | Q, W )P(Q, W )

' arg max
W

∑
Q

P(X | Q)P(Q |W )P(W )

' arg max
W

max
Q

P(X | Q)P(Q |W )P(W )
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Three levels of model

Acoustic model P(X | Q)
Probability of the acoustics given the phone states:
context-dependent HMMs using state clustering, phonetic
decision trees, etc.

Pronunciation model P(Q |W )
Probability of the phone states given the words; may be as
simple a dictionary of pronunciations, or a more complex
model

Language model P(W )
Probability of a sequence of words. Typically an n-gram
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Language modelling

Basic idea The language model is the prior probability of the
word sequence P(W )

Use a language model to disambiguate between similar
acoustics when combining linguistic and acoustic evidence
never mind the nudist play / never mind the new display

Use hand constructed networks in limited domains

Statistical language models: cover “ungrammatical”
utterances, computationally efcient, trainable from huge
amounts of data, can assign a probability to a sentence
fragment as well as a whole sentence
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Statistical language models

For use in speech recognition a language model must be:
statistical, have wide coverage, and be compatible with
left-to-right search algorithms

Only a few grammar-based models have met this requirement
(eg Chelba and Jelinek, 2000), and do not yet scale as well as
simple statistical models

n-grams are (still) the state-of-the-art language model for
ASR

Unsophisticated, linguistically implausible
Short, finite context
Model solely at the shallow word level
But: wide coverage, able to deal with “ungrammatical”
strings, statistical and scaleable

Probability of a word depends only on the identity of that
word and of the preceding n-1 words. These short sequences
of n words are called n-grams.
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Bigram language model

Word sequence W = w1, w2, . . . wM

P(W) = P(w1)P(w2 | w1)P(w3 | w1, w2)

. . . P(wM | w1, w2, . . . wM−1)

Bigram approximation—consider only one word of context:

P(W) ' P(w1)P(w2 | w1)P(w3 | w2) . . . P(wM | wM−1)

Parameters of a bigram are the conditional probabilities
P(wi | wj)

Maximum likelihood estimates by counting:

P(wi |wj) ∼ c(wj , wi )

c(wj)

where c(wj , wi ) is the number of observations of wj followed
by wi , and c(wj) is the number of observations of wj

(irrespective of what follows)
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Bigram network

Edinburgh

ticket

oneP(one | start of sentence)

P(end of sentence | Edinburgh)

P(Edinburgh | one)
P(ticket | one)

n-grams can be represented as probabilistic finite state
networks

only some arcs (and nodes) are shown for clarity: in a full
model there is an arc from every word to every word

note the special start and end sentence probabilities
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The zero probability problem

Maximum likelihood estimation is based on counts of words in
the training data

If a n-gram is not observed, it will have a count of 0—and the
maximum likelihood probability estimate will be 0

The zero probability problem: just because something does
not occur in the training data does not mean that it will not
occur

As n grows larger, so the data grow sparser, and the more
zero counts there will be

Solution: smooth the probability estimates so that unobserved
events do not have a zero probability

Since probabilities sum to 1, this means that some probability
is redistributed from observed to unobserved n-grams
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Smoothing language models

What is the probability of an unseen n-gram?

Add-one smoothing: add one to all counts and renormalize.

“Discounts” non-zero counts and redistributes to zero counts
Since most n-grams are unseen (for large n more types than
tokens!) this gives too much probability to unseen n-grams
(discussed in Manning and Schütze)

Absolute discounting: subtract a constant from the observed
(non-zero count) n-grams, and redistribute this subtracted
probability over the unseen n-grams (zero counts)

Kneser-Ney smoothing: family of smoothing methods based
on absolute discounting that are at the state of the art
(Goodman, 2001)
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Backing off

How is the probability distributed over unseen events?

Basic idea: estimate the probability of an unseen n-gram using
the (n-1)-gram estimate

Use successively less context: trigram → bigram → unigram

Back-off models redistribute the probability “freed” by
discounting the n-gram counts

For a bigram

P(wi | wj) =
c(wj , wi )− D

c(wj)
if c(wj , wi ) > c

= P(wi )bwj otherwise

c is the count threshold, and D is the discount. bwj is the
backoff weight required for normalization
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