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Variability in speech recognition

Several sources of variation

Size Number of word types in vocabulary, perplexity

Style Continuously spoken or isolated? Planned monologue
or spontaneous conversation?

Speaker Tuned for a particular speaker, or
speaker-independent? Adaptation to speaker
characteristics and accent

Acoustic environment Noise, competing speakers, channel
conditions (microphone, phone line, room acoustics)
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Linguistic Knowledge or Machine Learning

Intense effort needed to derive and encode linguistic rules that
cover all the language

Very difficult to take account of the variability of spoken
language with such approaches

Data-driven machine learning: Construct simple models of
speech which can be learned from large amounts of data
(thousands of hours of speech recordings)
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Statistical Speech Recognition
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Fundamental Equation of Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and

W denotes a word sequence, the most likely word sequence W∗ is

given by

W∗ = arg max
W

P(W | X)

Applying Bayes’ Theorem:

P(W | X) =
p(X |W)P(W)

p(X)

∝ p(X |W)P(W)

W∗ = arg max
W

p(X |W)︸ ︷︷ ︸
Acoustic

model

P(W)︸ ︷︷ ︸
Language

model
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Statistical speech recognition

Statistical models offer a statistical “guarantee” — see the licence
conditions of the best known automatic dictation system, for
example:

Licensee understands that speech recognition is a
statistical process and that recognition errors are
inherent in the process. licensee acknowledges that it
is licensee s responsibility to correct recognition errors
before using the results of the recognition.
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Hidden Markov Models
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HMM Acoustic Model

s(t−1) s(t) s(t+1)

x(t + 1)x(t − 1) x(t)

Hidden state s and observed acoustic features x

p(X |W) =
∑

Q

p(X | Q)P(Q |W)

Q is a sequence of pronunciations
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Continuous Density HMM

s1 s2 s3 sEP(s2 | s1)

P(s2 | s2)

p(x | s2)

x

p(x | s1)

x x

P(s1|sI)

p(x | s3)

sI
P(s3 | s2) P(sE | s3)

P(s3 | s3)P(s1 | s1)

Probabilistic finite state automaton

Paramaters λ:

Transition probabilities: akj = P(sj | sk)

Output probability density function: bj(x) = p(x | sj)
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Continuous Density HMM

s1 s2 s3 sEsI

x3x1 x2 x4 x5 x6

Probabilistic finite state automaton

Paramaters λ:

Transition probabilities: akj = P(sj | sk)

Output probability density function: bj(x) = p(x | sj)
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HMM Assumptions

s(t−1) s(t) s(t+1)

x(t + 1)x(t − 1) x(t)

1 Observation independence An acoustic observation x is
conditionally independent of all other observations given the
state that generated it

2 Markov process A state is conditionally independent of all
other states given the previous state
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Output distribution

s1 s2 s3 sEP(s2 | s1)

P(s2 | s2)

p(x | s2)

x

p(x | s1)

x x

P(s1|sI)

p(x | s3)

sI
P(s3 | s2) P(sE | s3)

P(s3 | s3)P(s1 | s1)

Single multivariate Gaussian with mean µj , covariance matrix Σj :

bj(x) = p(x | sj) = N (x; µj ,Σj)

M-component Gaussian mixture model:

bj(x) = p(x | sj) =
M∑

m=1

cjmN (x; µjm,Σjm)
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The three problems of HMMs

Working with HMMs requires the solution of three problems:

1 Likelihood Determine the overall likelihood of an observation
sequence X = (x1, . . . , xt , . . . , xT ) being generated by an
HMM

2 Decoding Given an observation sequence and an HMM,
determine the most probable hidden state sequence

3 Training Given an observation sequence and an HMM, learn
the best HMM parameters λ = {{ajk}, {bj()}}
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1. Likelihood: The Forward algorithm

Goal: determine p(X | λ)

Sum over all possible state sequences s1s2 . . . sT that could
result in the observation sequence X

Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)
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Recursive algorithms on HMMs

Visualize the problem as a state-time trellis

k

i

j

i

j

k

i

j

k

t-1 t t+1

Steve Renals Hidden Markov Models 15



1. Likelihood: The Forward algorithm

Goal: determine p(X | λ)

Sum over all possible state sequences s1s2 . . . sT that could
result in the observation sequence X

Rather than enumerating each sequence, compute the
probabilities recursively (exploiting the Markov assumption)

Forward probability, αt(sj): the probability of observing the
observation sequence x1 . . . xt and being in state sj at time t:

αt(sj) = p(x1, . . . , xt ,S(t) = sj | λ)
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1. Likelihood: The Forward recursion

Initialization

α0(sI ) = 1

α0(sj) = 0 if sj 6= sI

Recursion

αt(sj) =
N∑

i=1

αt−1(si )aijbj(xt)

Termination

p(X | λ) = αT (sE ) =
N∑

i=1

αT (si )aiE
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Interim Summary

Framework for statistical speech recognition

HMM acoustic models

HMM likelihood computation: the Forward algorithm

Reading

Jurafsky and Martin (2008). Speech and Language
Processing(2nd ed.): sections 6.1–6.5; 9.2; 9.4.
Gales and Young (2007). “The Application of Hidden Markov
Models in Speech Recognition”, Foundations and Trends in
Signal Processing, 1 (3), 195–304: section 2.2.
Rabiner and Juang (1989). “An introduction to hidden Markov
models”, IEEE ASSP Magazine, 3 (1), 4–16.
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Hidden Markov Models (part 2)

Steve Renals

Automatic Speech Recognition— ASR Lecture 6
5 February 2009
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Continuous Density HMM

s1 s2 s3 sEP(s2 | s1)

P(s2 | s2)

p(x | s2)

x

p(x | s1)

x x

P(s1|sI)

p(x | s3)

sI
P(s3 | s2) P(sE | s3)

P(s3 | s3)P(s1 | s1)

Probabilistic finite state automaton

Paramaters λ:

Transition probabilities: akj = P(sj | sk)

Output probability density function: bj(x) = p(x | sj)
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The three problems of HMMs

Working with HMMs requires the solution of three problems:

1 Likelihood Determine the overall likelihood of an observation
sequence X = (x1, . . . , xt , . . . , xT ) being generated by an
HMM

2 Decoding Given an observation sequence and an HMM,
determine the most probable hidden state sequence

3 Training Given an observation sequence and an HMM, learn
the best HMM parameters λ = {{ajk}, {bj()}}
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1. Likelihood: Forward Recursion

αt(sj) = p(x1, . . . , xt ,S(t) = sj | λ)

k

i

j

t-1

i

j

k

t

i

j

k

t+1

αt−1(sk)

αt−1(s j)

αt−1(si)

aki

a ji

aii
b j(xt)∑ αt(si)

Steve Renals Hidden Markov Models (part 2) 23



Viterbi approximation

Instead of summing over all possible state sequences, just
consider the most likely

Achieve this by changing the summation to a maximisation in
the recursion:

Vt(sj) = max
i

Vt−1(si )aijbj(xt)

Changing the recursion in this way gives the likelihood of the
most probable path

We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path
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Viterbi Recursion

Likelihood of the most probable path

k

i

j

t-1

i

j

k

t

i

j

k

t+1

Vt−1(sk)

Vt−1(s j)

Vt−1(si)

aki

a ji

aii
b j(xt)

max

Vt(si)
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Viterbi Recursion

Backpointers to the previous state on the most probable path

k

i

j

t-1

i

j

k

t

i

j

k

t+1

Vt−1(s j)

a ji

b j(xt) Vt(si)
btt(si) = s j
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2. Decoding: The Viterbi algorithm

Initialization

V0(sI ) = 1

V0(sj) = 0 if sj 6= sI

bt0(sj) = 0

Recursion

Vt(sj) =
N

max
i=1

Vt−1(si )aijbj(xt)

btt(sj) = arg
N

max
i=1

Vt−1(si )aijbj(xt)

Termination

P∗ = VT (sE ) =
N

max
i=1

VT (si )aiE

s∗T = btT (qE ) = arg
N

max
i=1

VT (si )aiE
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Viterbi Backtrace

Backtrace to find the state sequence of the most probable path

k

i

j

t-1

i

j

k

t

i

j

k

t+1

Vt−1(s j)

a ji

b j(xt) Vt(si)
btt(si) = s j

btt+1(sk) = sk
Steve Renals Hidden Markov Models (part 2) 28



3. Training: Forward-Backward algorithm

Goal: Efficiently estimate the parameters of an HMM λ from
an observation sequence

Assume single Gaussian output probability distribution

bj(x) = p(x | sj) = N (x; µj ,Σj)

Parameters λ:

Transition probabilities aij :∑
i

aij = 1

Gaussian parameters for state sj :
mean vector µj; covariance matrix Σj
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Viterbi Training

If we knew the state-time alignment, then each observation
feature vector could be assigned to a specific state

A state-time alignment can be obtained using the most
probable path obtained by Viterbi decoding
Maximum likelihood estimate of aij , if C (si → sj) is the count
of transitions from si to sj

âij =
C (si → sj)∑
k C (sk → sj)

Likewise if Zj is the set of observed acoustic feature vectors
assigned to state j , we can use the standard maximum
likelihood estimates for the mean and the covariance:

µ̂j =

∑
x∈Zj

x

|Zj |

Σ̂
j

=

∑
x∈Zj

(x− µ̂j)(x− µ̂j)T

|Zj |
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EM Algorithm

Viterbi training is an approximation—we would like to
consider all possible paths

In this case rather than having a hard state-time alignment we
estimate a probability

State occupation probability: The probability γt(sj) of
occupying state sj at time t given the sequence of observations

We can use this for an iterative algorithm for HMM training:
the EM algorithm

Each iteration has two steps:

E-step estimate the state occupation probabilities
(Expectation)

M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
(Maximisation)
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M-step re-estimate the HMM parameters based on the
estimated state occupation probabilities
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Backward probabilities

To estimate the state occupation probabilities it is useful to
define (recursively) another set of probabilities—the Backward
probabilities

βt(sj) = p(xt+1, xt+2, xT | S(t) = sj ,λ)

The probability of future observations given a the HMM is in
state sj at time t

These can be recursively computed (going backwards in time)

Initialisation
βT (si ) = aiE

Recursion

βt(si ) =
N∑

j=1

aijbj(xt+1)βt+1(sj)

Termination

p(X | λ) = β0(sI ) =
N∑

j=1

aIjbj(x1)β1(sj) = αT (sE )
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Backward Recursion

βt(sj) = p(xt+1, xt+2, xT | S(t) = sj ,λ)

k

i

j

t-1

i

j

k

t

i

j

k

t+1

βt+1(sk)

βt+1(s j)

βt+1(si)

aik

ai j

aii

bk(xt+1)

b j(xt+1)

bi(xt+1)∑βt(si)
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State Occupation Probability

The state occupation probability γt(sj) is the probability of
occupying state sj at time t given the sequence of observations

Express in terms of the forward and backward probabilities:

γt(sj) = P(S(t) = sj | X,λ) =
1

αT (sE )
αt(j)βt(j)

recalling that p(X|λ) = αT (sE )
Since

αt(sj)βt(sj) = p(x1, . . . , xt ,S(t) = sj | λ)

p(xt+1, xt+2, xT | S(t) = sj ,λ)

= p(x1, . . . , xt , xt+1, xt+2, . . . , xT ,S(t) = sj | λ)

= p(X,S(t) = sj | λ)

P(S(t) = sj | X,λ) =
p(X,S(t) = sj | λ)

p(X|λ)
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Re-estimation of Gaussian parameters

The sum of state occupation probabilities through time for a
state, may be regarded as a “soft” count

We can use this “soft” alignment to re-estimate the HMM
parameters:

µ̂j =

∑T
t=1 γt(sj)xt∑T
t=1 γt(sj)

Σ̂
j

=

∑T
t=1 γt(sj)(xt − µ̂j)(x− µ̂j)T∑T

t=1 γt(sj)
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Re-estimation of transition probabilities

Similarly to the state occupation probability, we can estimate
ξt(si , sj), the probability of being in si at time t and sj at
t + 1, given the observations:

ξt(si , sj) = P(S(t) = si ,S(t + 1) = sj | X,λ)

=
P(S(t) = si , S(t + 1) = sj ,X | λ)

p(X|Λ)

=
αt(si )aijbj(xt+1)βt+1(sj)

αT (sE )

We can use this to re-estimate the transition probabilities

âij =

∑T
t=1 ξt(si , sj)∑N

k=1

∑T
t=1 ξt(si , sk)
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Pulling it all together

Iterative estimation of HMM parameters using the EM
algorithm. At each iteration

E step For all time-state pairs
1 Recursively compute the forward probabilities
αt(sj) and backward probabilities βt(j)

2 Compute the state occupation probabilities
γt(sj) and ξt(si , sj)

M step Based on the estimated state occupation
probabilities re-estimate the HMM parameters:
mean vectors µj , covariance matrices Σj and
transition probabilities aij

The application of the EM algorithm to HMM training is
sometimes called the Forward-Backward algorithm
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Extension to a corpus of utterances

We usually train from a large corpus of R utterances

If xr
t is the tth frame of the r th utterance Xr then we can

compute the probabilities αr
t(j), βr

t (j), γr
t (sj) and ξrt (si , sj) as

before

The re-estimates are as before, except we must sum over the
R utterances, eg:

µ̂j =

∑R
r=1

∑T
t=1 γ

r
t (sj)xr

t∑R
r=1

∑T
t=1 γ

r
t (sj)
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Extension to Gaussian mixture model (GMM)

The assumption of a Gaussian distribution at each state is
very strong; in practice the acoustic feature vectors associated
with a state may be strongly non-Gaussian

In this case an M-component Gaussian mixture model is an
appropriate density function:

bj(x) = p(x | sj) =
M∑

m=1

cjmN (x; µjm,Σjm)

Given enough components, this family of functions can model
any distribution.

Train using the EM algorithm, in which the component
estimation probabilities are estimated in the E-step
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EM training of HMM/GMM

Rather than estimating the state-time alignment, we estimate
the component/state-time alignment, and component-state
occupation probabilities γt(sj ,m): the probability of
occupying mixture component m of state sj at time t

We can thus re-estimate the mean of mixture component m
of state sj as follows

µ̂jm =

∑T
t=1 γt(sj ,m)xt∑T
t=1 γt(sj ,m)

And likewise for the covariance matrices (mixture models
often use diagonal covariance matrices)
The mixture coefficients are re-estimated in a similar way to
transition probabilities:

ĉjm =

∑T
t=1 γt(sj ,m)∑M

`=1

∑T
t=1 γt(sj , `)
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Doing the computation

The forward, backward and Viterbi recursions result in a long
sequence of probabilities being multiplied

This can cause floating point underflow problems

In practice computations are performed in the log domain (in
which multiplies become adds)

Working in the log domain also avoids needing to perform the
exponentiation when computing Gaussians
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Summary: HMMs

HMMs provide a generative model for statistical speech
recognition

Three key problems
1 Computing the overall likelihood: the Forward algorithm
2 Decoding the most likely state sequence: the Viterbi algorithm
3 Estimating the most likely parameters: the EM

(Forward-Backward) algorithm

Solutions to these problems are tractable due to the two key
HMM assumptions

1 Conditional independence of observations given the current
state

2 Markov assumption on the states
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