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Overview

Phone models

Modelling phones with HMMs

The need to model phonetic context

Triphone models

Smoothing—interpolation and backing-off

Parameter sharing—tied mixtures, generalised triphones, state
clustering

Choosing which states to share—phonetic decision trees
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Recap: Continuous Density HMM

s1 s2 s3 sEsI

x3x1 x2 x4 x5 x6

Probabilistic finite state automaton

Paramaters λ:

Transition probabilities: akj = P(sj | sk)

Output probability density function: bj(x) = p(x | sj)
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Whole word models
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One state per phone models
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Three-state phone models

!5 !4 !3 !2 !1 0 1 2 3 4
!0.1

0

0.1

0.2

0.3

0.4

!5 !4 !3 !2 !1 0 1 2 3 4
!0.1

0

0.1

0.2

0.3

0.4

!5 !4 !3 !2 !1 0 1 2 3 4
!0.1

0

0.1

0.2

0.3

0.4

/ih/

I Emid endbeg

Steve Renals Modelling speech with HMMs 6



Word model made of phone models
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Word sequence models
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Hierarchical Modelling in Speech Recognition
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Phonetic Context

Context The acoustic phonetic context of a speech unit has
an effect on its acoustic realization

Coarticulation the place of articulation for one speech sound
depends on a neighbouring speech sound.

Consider /n/ in ten and tenth

dental in ten
alveolar in tenth
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Phonetic Context Example
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Modelling Context

Subword units Individual phone units need to deal with a lot
of variability

Use longer units that incorporate context, eg: diphones,
demisyllables, syllables
Use multiple models for each: context-dependent phone
models
Context-dependent phones are termed allophones of the parent
phone

Pronunciations

“did you” d ih jh y ah
“around this” ix r aw n ih s
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Context-dependent phone models

Triphones Each phone has a unique model for each left and
right context. Represent a phone x with left context l and
right context r as l-x+r

Cross-word triphones Consider the phrase “don’t ask”:sil d
oh n t ah s k sil. Corresponding triphone sequence:
sil sil-d+oh d-oh+n oh-n+t n-t+ah t-ah+s ah-s+k s-k+sil sil

Note that triphone context extends across words (eg unit
n-t+ah)

Word-internal triphones Only take account of context within
words, so “don’t ask” is represented by:
sil d+oh d-oh+n oh-n+t n-t ah+s ah-s+k s-k sil
Word internal triphones result in far fewer models, and enable
the subword sequence for a word to be known independent of
the neighbouring words.
But: context is not well-modelled at word boundaries.
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Divide and conquer

Context-dependent models are more specific than
context-independent models

Increase the detail of modelling by extending the state space
— but by defining multiple context dependent models, rather
than more complex context independent models

Divide and conquer: as more context-dependent models are
defined, each one becomes responsible for a smaller region of
the acoustic-phonetic space

Let the data tell us how many contexts to model

Steve Renals Modelling speech with HMMs 14



Triphone models

How many triphones are there? Consider a 40 phone system.
403 = 64 000 possible triphones. In a cross-word system
maybe 50 000 can occur

Number of parameters:

50 000 three-state HMMs, with 10 component Gaussian
mixtures per state: 1.5M Gaussians
39-dimension feature vectors (12 MFCCs + energy), deltas
and accelerations
Assuming diagonal Gaussians: about 790 parameters/state
Total about 118 million parameters!

We would need a very large amount of training data to train
such a system

to enable robust estimation of all parameters
to ensure that all possible triphones are observed (more than
once) in the training data

Steve Renals Modelling speech with HMMs 15

Modelling infrequent triphones

The number of possible triphone types is much greater than the
number of observed triphone tokens.

Smoothing—combine less-specific and more-specific models

Parameter Sharing—different contexts share models

Bottom-up—start with all possible contexts, then merge
Top-down—start with a single context, then split

All approaches are data driven
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Smoothing: Backing off

Basic idea Use less-specific models when there is not enough
data to train a more specific one

For example if a triphone is not observed (or only a few
examples are observed) use a biphone model:
sh-iy+l → iy+l
If only a few biphone occurrences use a monophone

Use a minimum training example count to determine whether
a triphone should be modelled or backed-off to a biphone
(likewise for biphones)

Ensures that each model is well trained

But training data is sparse (especially when cross-word
triphones are used) so relatively few specific triphone models
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Smoothing: Interpolation

Basic idea Combine less-specific models with more specific
models

Interpolate the parameters of a triphone λtri with those of a
biphone λbi and a monophone λmono :

λ̂tri = α3λ
tri + α2λ

bi + α1λ
mono

Estimate the interpolation parameters α using deleted
interpolation

This enables more triphone models to be estimated, but adds
robustness by sharing training data from other contexts
(through the biphone and monophone models)
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Parameter Sharing

Basic idea Explicitly share models or parameters between
different contexts

enables training data to be shared between the models
enables models to share parameters

Sharing can take place at different levels

1 Sharing Gaussians: all distributions share the same set of
Gaussians but have different mixture weights (tied mixtures)

2 Sharing states: allow different models to share the same
states (state clustering)

3 Sharing models: merge those context-dependent models that
are the most similar (generalised triphones)
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Tied Mixture Model
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Sharing Gaussians: Tied mixture models

Basic idea all states share the same Gaussians

Have a pool of G Gaussians shared between all HMM
states—each state has a G -component GMM output
distribution

Therefore the mean vectors and covariance matrices are
shared between states

The mixture component weights are specific to each state

In context-dependent models, the mixture component weights
may be smoothed using interpolation

Tied mixture systems work well due to the large amount of
parameter sharing and smoothing of the weights

But we can do better (state clustering)!

Tied mixtures are still used when time and memory efficiency
is important (eg embedded systems)
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Interim Summary

Modelling phones with HMMs

Hierarchical modelling with HMMs

Acoustic context and coarticulation

Divide and conquer approaches to modelling context:
context-dependent phone models

Modelling detail with limited training data: smoothing and
parameter sharing

Next lecture: state clustering, phonetic decision trees
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Context-Dependent Models (part 2)

Steve Renals

Automatic Speech Recognition— ASR Lecture 8
12 February 2009
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Overview

Context-dependent phone models

The need to model phonetic context

Triphone models

Smoothing—interpolation and backing-off

Parameter sharing—tied mixtures, generalised triphones, state
clustering

Choosing which states to share—phonetic decision trees
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Sharing Models: Generalized triphones

Basic idea Merge similar context-dependent models

Instead of using phone classes as left and right contexts,
define context classes that cover multiple phone types

Top down merging: Use broad phonetic classes (eg stop,
fricative) as context classes

Bottom-up merging: Compare allophone models with different
triphone contexts and merge those that are similar

Merged models will be estimated from more data than
individual models: more accurate models, fewer models in
total

The resultant merged models are referred to as generalized
triphones
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Example: Generalized Triphones

ax-b+ah

ae-b+ah

(ax,ae)-b+ah
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Sharing States: State clustering

Basic idea States which are responsible for acoustically similar
data are shared

By clustering similar states, the training data associated with
individual states may be pooled together — results in better
parameter estimates for the state

1 Create a set of context dependent models for a parent phone
2 Cluster and tie similar states, ensuring that each resultant

clustered state is responsible for “enough” training data (ie
setting a minimum state occupation count)

More flexible than clustering whole models: left and right
contexts may be clustered separately
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Generalized triphones
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State Clustering
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Good contexts to share

Which states should be clustered together?

Bottom-up clustering, for triphones of the same parent phone
1 Create raw triphone models for each observed triphone context
2 Cluster states as before

Top-down clustering: start with a parent context independent
model then successively split models to create context
dependent models

Phonetic decision trees
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Phonetic Decision Trees

Basic idea Build a decision tree for each state of each parent
phone, with yes/no questions at each node

At the root of the tree, all states are shared

Questions split the pool of states, the resultant state clusters
are given by the leaves of the tree

Example questions:
Is the left context a nasal?
Is the right context a central stop?

The questions at each node are chosen from a large set of
predefined questions

Choose the question which maximizes the likelihood of the
data given the state clusters

Stop splitting if either: (a) the likelihood does not increase by
more than a predefined threshold; or (b) the amount of data
associated with a split node would below a threshold
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Phonetic Decision Tree

y n

y y

y y

n n

nn

L-nasal?

L-fricative?R-liquid?

R-l? R-m?

m-iy+l
n-iy+l
ng-i+l

Cluster centre states of phone /iy/

States in each leaf node are tied
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Phonetic questions

Ask questions of the form: does phone at offset s have feature
f ?

Offsets are +/–1 for triphone context

Example general questions:

Stop: b d g p t k
Nasal: m n ng
Fricative: ch dh f jh s sh th v z zh
Liquid: l r w y
Vowel: aa ae ah ao aw ax axr ay eh er ...

Example consonant questions: Un/voiced, front/central/back,
fortis (ch f k p s sh t th), lenis (b d dh g jh v z zh),
voiced stop, ....

Example vowel questions: front, central, back, long, short,
diphthong, rounded, ....
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Most useful phonetic questions

All states of all models:
+Vowel -Vowel +Unrounded -UnFortisLenis
+UnFortisLenis +r

Entry state of all models:
-UnFortisLenis -Vowel -Nasal -CentralFront
-Unrounded -Fortis

Exit state of all consonants:
+Vowel +Unrounded +High +ee +Rounded +Syllabic

(for Wall St Journal read speech—Young, Odell and Woodland
1994)
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Likelihood of a state cluster

Basic idea Compute the log likelihood of the data associated
with a pool of states

All states pooled in a single cluster at the root

All states have Gaussian output pdf

Let S = {s1, s2, . . . , sK} be a pool of K states forming a
cluster

Each state si has associated with it a set of Ni acoustic
obesrvations Xi = {xi ,1, xi ,2, . . . , xi ,Ni

}
The pool of states S is clustered together to form a single
Gaussian output distribution with mean µS and covariance ΣS

The log likelihood of the data associated with cluster S is:

L(S) =
K∑

i=1

log P(Xi |µS ,ΣS)
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State splitting (1)

Basic idea Use the likelihood of the parent state and of the
split states to choose the splitting question

Split S into two partitions Sy and Sn using a question about
the phonetic context

Each partition is now clustered together to form a single
Gaussian output distribution with mean µSy

and covariance
ΣSy ) (for partition Sy )

The likelihood of the data after partition is given by
L(Sy ) + L(Sn)

The total likelihood of the partitioned data will increase by

∆ = L(Sy ) + L(Sn)− L(S)
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State splitting (2)

Basic idea Use the likelihood of the parent state and of the
split states to choose the splitting question

∆ = L(Sy ) + L(Sn)− L(S)

Cycle through all possible questions, compute ∆ for each and
choose the question for which ∆ is biggest
Continue by splitting each of the new clusters Sy and Sn

Terminate when
1 Maximum ∆ falls below a threshold
2 The amount of data associated with a split node falls below a

threshold

For a Gaussian output distribution: State likelihood estimates
can be estimated using just the state occupation counts
(obtained at alignment) and the parameters of the Gaussian
— no need to use the acoustic data
State occupation count: sum of state occupation probabilities
for a state over time
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“Mixing up”

Basic idea Transforming an HMM-based system based on
Gaussian distributions to one based on mixtures of Gaussians

The above methods for state clustering assume that the state
outputs are Gaussians—this makes the computations much
simpler

BUT: Gaussian mixtures offer much better acoustic models
than Gaussians

Solution:

Perform state clustering using Gaussian distributions
Split the Gaussian distributions in the clustered states, by
cloning and perturbing the means by a small fraction of the
standard deviation, and retrain.
Repeat by splitting the dominant (highest state occupation
count) mixture components in each state
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“Mixing up”

!5 !4 !3 !2 !1 0 1 2 3 4
!0.1

0

0.1

0.2

0.3

0.4

s-iy+l f-iy-l t-iy-n t-iy-m

!5 !4 !3 !2 !1 0 1 2 3 4
!0.1

0

0.1

0.2

0.3

0.4

!5 !4 !3 !2 !1 0 1 2 3 4
!0.1

0

0.1

0.2

0.3

0.4

!5 !4 !3 !2 !1 0 1 2 3 4
!0.1

0

0.1

0.2

0.3

0.4

!5 !4 !3 !2 !1 0 1 2 3 4
!0.1

0

0.1

0.2

0.3

0.4

!5 !4 !3 !2 !1 0 1 2 3 4
!0.1

0

0.1

0.2

0.3

0.4

State-clustered triphones (Gaussians)

s-iy+l f-iy-l t-iy-n t-iy-m

!5 !4 !3 !2 !1 0 1 2 3 4
!1

0

1

2

3

4

5

!5 !4 !3 !2 !1 0 1 2 3 4
!1

0

1

2

3

4

5

!5 !4 !3 !2 !1 0 1 2 3 4
!1

0

1

2

3

4

5

!5 !4 !3 !2 !1 0 1 2 3 4
!1

0

1

2

3

4

5

!5 !4 !3 !2 !1 0 1 2 3 4
!1

0

1

2

3

4

5

!5 !4 !3 !2 !1 0 1 2 3 4
!1

0

1

2

3

4

5

State-clustered triphones (GMMs)
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Summary: Context-dependent acoustic modelling

Share parameters through state clustering

Cluster states using phonetic decision trees for each state of
parent phone

Use Gaussian distributions when state clustering

Then split Gaussians and retrain to obtain a GMM state
clustered system
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References: context-dependent acoustic modelling

c1980: First proposed by Bahl et al (IBM)

Schwartz et al (1985): first paper using triphone models

Lee (1990): generalized triphones

Bellegarda (1990), Huang (1992): tied mixture modelling

Bahl et al (1991): phonetic decision trees first proposed

Young and Woodland (1994): state clustering

Young et al (1994): decision tree-based state clustering
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