Solutions for Tutorial 5: Unification and Rewrite Rules

Exercise 1

(a) 1. $(X \equiv 2) \land (X \equiv 2)$	(by decompose)
2. $(2 \equiv 2) \land (X \equiv 2)$	(by <i>eliminate</i>)
3. $X \equiv 2$	(by <i>delete</i>)

Succeeds with $X \equiv 2$

(b) 1. $(X \equiv 2+2) \land (X \equiv 4)$ (by decompose) 2. $(4 \equiv 2+2) \land (X \equiv 4)$ (by eliminate)

Fails due to conflict

(c) 1. $(X \equiv a) \land (Y \equiv g(b)) \land (Y \equiv g(b))$ (by decompose) 2. $(X \equiv a) \land (g(b) \equiv g(b)) \land (Y \equiv g(b))$ (by eliminate) 3. $(X \equiv a) \land (Y \equiv g(b))$ (by delete)

Succeeds with $X \equiv a$ and $Y \equiv g(b)$

(d) 1. $(X \equiv a) \land (b \equiv Y)$ (by decompose)

Fails as target contains a variable.

Exercise 2

(a) 1. $(X \equiv a) \land (b \equiv Y)$ (by decompose) 2. $(X \equiv a) \land (Y \equiv b)$ (by switch)

Succeeds with $X \equiv a$ and $Y \equiv b$

(b) 1. $(X \equiv Y) \land (b \equiv a)$ (by decompose)

Fails due to conflict

(c) 1. $(X \equiv f(Y)) \land (a \equiv Y)$	(by decompose)
2. $(X \equiv f(Y)) \land (Y \equiv a)$	(by $switch$)
3. $(X \equiv f(a)) \land (Y \equiv a)$	(by <i>eliminate</i>)

Succeeds with $X \equiv f(a)$ and $Y \equiv a$.

Fails due to occurs check.

(e) 1. $(a + X \equiv a) \land (b \equiv Y)$ (by decompose)

Fails due conflict.

Exercise 3

A suitable property is that g(X, Y) = X, for all X. Adding this to the unification algorithm means that the two terms given can unify with the substitution X = f(a, a) and Y = a. This can be shown by performing the substitutions on both terms and applying the property of g.

Exercise 4

One normal form is:

$\neg (\neg p \land (q \lor \neg r))$	
$= \neg \neg p \lor \neg (q \lor \neg r))$	(From rule 2)
$= p \lor \neg (q \lor \neg r))$	(From rule 1)
$= p \lor (\neg q \land \neg \neg r))$	(From rule 3)
$= p \lor (\neg q \land r))$	(From rule 1)

Exercise 5

To show that the rule terminates we need some decreasing measure. We could choose (among other possibilities):

- Number of arithmetic operations decreases.
- Number of terms decreases.