Automated Reasoning

Lecture 13: Rewriting II

Jacques Fleuriot jdf@inf.ed.ac.uk

Recap

Previously: Rewriting

- Definition of Rewrite Rule of Inference
- Termination
- Rewriting in Isabelle
- ▶ This time: More of the same!
 - Canonical normal forms
 - Confluence
 - Critical Pairs
 - Knuth-Bendix Completion

Canonical Normal Form

For some rewrite rule sets, order of application might affect result.

We might have:

where all of t_1 , t_2 , t_3 , t_4 , t_5 are in normal form after multiple (zero or more) rewrite rule applications.

If all the normal forms are identical we can say we have a **canonical** normal form for *s*.

This is a very nice property!

- Means that order of rewrite rule application doesn't matter
- In general, means our rewrites are simplifying the expression in a canonical (safe) way.

Confluence and Church-Rosser

How do we know when a set of rules yields canonical normal forms?

A set of rewrite rules is **confluent** if for all terms *r*, s_1 , s_2 such that $r \longrightarrow^* s_1$ and $r \longrightarrow^* s_2$ there exists a term *t* such that $s_1 \longrightarrow^* t$ and $s_2 \longrightarrow^* t$.

A set of rewrite rules is **Church-Rosser** if for all terms s_1 and s_2 such that $s_1 \leftrightarrow^* s_2$, there exists a term *t* such that $s_1 \longrightarrow^* t$ and $s_2 \longrightarrow^* t$.

Theorem

Church-Rosser is equivalent to confluence.

Theorem

For **terminating** rewrite sets, these properties mean that any expression will rewrite to a canonical normal form.

Local Confluence

The properties of Church-Rosser and confluence can be difficult to prove. A weaker definition is useful:

A set of rewrite rules is **locally confluent** if for all terms r, s_1 , s_2 such that $r \longrightarrow s_1$ and $r \longrightarrow s_2$ there exists a term t such that $s_1 \longrightarrow^* t$ and $s_2 \longrightarrow^* t$.

Theorem (Newman's Lemma)

local confluence + termination = confluence

Also: local confluence is decidable (due to Knuth and Bendix)

Both theorem and the decision procedure use idea of critical pairs

Choices in Rewriting

How can choices arise in rewriting?

- Multiple rules apply to a single redex: order might matter
- Rules apply to multiple redexes:
 - if they are separate: order does not matter
 - ▶ if one contains the other: order might matter

Rules	Rewrites	Critical Pair
$X^0 \Rightarrow 1$	0^0 rewrites to 0 and	$\langle 0,1 \rangle$
$0^Y \Rightarrow 0$	to 1	
$X \cdot e \Rightarrow X$	$(x \cdot e) \cdot z$ rewrites to	$\langle x \cdot z, x \cdot (e \cdot z) \rangle$
$(X \cdot Y) \cdot Z \Rightarrow X \cdot (Y \cdot Z)$	$x \cdot z$ and $x \cdot (e \cdot z)$	

We are interested in cases where the order matters:

Critical Pairs

Given two rules $L_1 \Rightarrow R_1$ and $L_2 \Rightarrow R_2$, we are concerned with the case when there exists a *non-variable* sub-term *s* of L_1 such that $s[\theta] = L_2[\theta]$, with most general unifier θ .

Applying these rules in different orders gives rise to a **critical pair**, where $L_1[\theta] \{ R_2[\theta] / s[\theta] \}$ denotes replacing $s[\theta]$ by $R_2[\theta]$ in $L_1[\theta]$.

Note: the variables in the two rules should be *renamed* so they do **not** share any variable names.

Note: A rewrite rule may have critical pairs with itself e.g. consider the rule $f(f(x)) \Rightarrow g(x)$.

With $W \cdot e \Rightarrow W$ and $(X \cdot Y) \cdot Z \Rightarrow X \cdot (Y \cdot Z)$, where *X*, *Y* and *Z* are variables, we can have $\theta = [W/X, e/Y]$, any other?

Critical Pairs: Example

Consider the rewrite rules:

The mgu θ , given our choice of non-variable subterm *s* of L_1 , is given by $\theta = \{i(x_1)/x, x_1/y\}$ and by considering:

We get the critical pair $\langle f(i(x_1), f(x_1, z)), f(e, z) \rangle$.

Testing for Local Confluence

If we can **conflate** (join) all the critical pairs, then have **local confluence**.

Conflation for a critical pair $\langle s_1, s_2 \rangle$ is when there is a *t* such that $s_1 \longrightarrow^* t$ and $s_2 \longrightarrow^* t$.

An algorithm to test for local confluence (assuming termination):

- **1**. Find all the critical pairs in set of rewrite rules R
- **2**. For each critical pair $\langle s_1, s_2 \rangle$:
 - **2.1** Find a normal form s'_1 of s_1 ;
 - **2.2** Find a normal form s'_2 of s_2 ;
 - **2.3** Check $s'_1 = s'_2$, if not then fail.

Establishing Local Confluence

Sometimes a set of rules is not locally confluent

 $\begin{array}{l} X \cdot \textbf{\textit{e}} \Rightarrow X \\ f \cdot X \Rightarrow X \end{array} \text{ is not locally confluent: } \langle \textbf{\textit{f}}, \textbf{\textit{e}} \rangle \text{ does not conflate.} \end{array}$

We can add the rule $f \Rightarrow e$ to make this critical pair joinable.

However, adding new rules requires care:

- Must preserve termination
- Might give rise to *new* critical pairs and so we may need to check local confluence again.

Establishing Local Confluence: Example

Consider the set *R* consisting of just one rewrite rule, with *x* a variable:

$$f(f(x)) \Rightarrow g(x)$$

which has exactly one critical pair (CP) when it is overlapped with a *renamed* copy of itself $f(f(y)) \Rightarrow g(y)$. The lhs f(f(x)) unifies with the subterm f(y) of the renamed lhs to produce the mgu $\{f(x)/y\}$:

- ▶ This CP is not joinable, so *R* is not locally confluent.
- Adding the rule $f(g(x)) \Rightarrow g(f(x))$ to *R* makes the pair joinable.
- ▶ The enlarged *R* is terminating (how?), but
- (After renaming) new CP: $\langle g(g(z)), f(g(f(z))) \rangle$ arises (how?);
- ► LC test: it is joinable, $f(g(f(z))) \rightarrow g(f(f(z))) \rightarrow g(g(z))$.

Knuth-Bendix (KB) Completion Algorithm

Start with a set R of terminating rewrite rules

While there are non-conflatable critical pairs in *R*:

- **1**. Take a critical pair $\langle s_1, s_2 \rangle$ in *R*
- **2**. Normalise s_1 to s'_1 and s_2 to s'_2 (and we know $s'_1 \neq s'_2$)

3. if
$$R \cup \{s'_1 \Rightarrow s'_2\}$$
 is terminating then
 $R := R \cup \{s'_1 \Rightarrow s'_2\}$
else if $R \cup \{s'_2 \Rightarrow s'_1\}$ is terminating then
 $R := R \cup \{s'_2 \Rightarrow s'_1\}$
else Fail

- ► If KB succeeds then we have a locally confluent and terminating (and hence confluent) rewrite set (KB may run forever!)
- Depends on the termination check: define a measure and use that to test for termination.

Summary

- Rewriting (Bundy Ch. 9)
 - Local confluence
 - Local confluence + Termination = Confluence
 - Canonical Normal Forms
 - Critical Pairs and Knuth-Bendix Completion