
Automated Reasoning

Lecture 13: Rewriting II

Jacques Fleuriot
jdf@inf.ed.ac.uk

jdf@inf.ed.ac.uk


Recap

▶ Previously: Rewriting
▶ Definition of Rewrite Rule of Inference
▶ Termination
▶ Rewriting in Isabelle

▶ This time: More of the same!
▶ Canonical normal forms
▶ Confluence
▶ Critical Pairs
▶ Knuth-Bendix Completion



Canonical Normal Form
For some rewrite rule sets, order of application might affect result.

We might have:
s

t1
*

t2
*

t3
*

t4
*

t5
*

where all of t1, t2, t3, t4, t5 are in normal form after multiple (zero or
more) rewrite rule applications.

If all the normal forms are identical we can say we have a canonical
normal form for s.

This is a very nice property!
▶ Means that order of rewrite rule application doesn’t matter
▶ In general, means our rewrites are simplifying the expression in

a canonical (safe) way.



Confluence and Church-Rosser

How do we know when a set of rules yields canonical normal forms?

A set of rewrite rules is confluent if for all terms r,
s1, s2 such that r −→∗ s1 and r −→∗ s2 there exists a
term t such that s1 −→∗ t and s2 −→∗ t.

A set of rewrite rules isChurch-Rosser if for all terms
s1 and s2 such that s1 ↔∗ s2, there exists a term t such
that s1 −→∗ t and s2 −→∗ t.

r

s1 s2

t

∗ ∗

∗ ∗

Theorem
Church-Rosser is equivalent to confluence.

Theorem
For terminating rewrite sets, these properties mean that any
expression will rewrite to a canonical normal form.



Local Confluence

The properties of Church-Rosser and confluence can be difficult to
prove. A weaker definition is useful:

A set of rewrite rules is locally confluent if for all
terms r, s1, s2 such that r −→ s1 and r −→ s2 there
exists a term t such that s1 −→∗ t and s2 −→∗ t.

r

s1 s2

t∗ ∗

Theorem (Newman’s Lemma)
local confluence + termination = confluence

Also: local confluence is decidable (due to Knuth and Bendix)

Both theorem and the decision procedure use idea of critical pairs



Choices in Rewriting

How can choices arise in rewriting?
▶ Multiple rules apply to a single redex: order might matter
▶ Rules apply to multiple redexes:

▶ if they are separate: order does not matter
▶ if one contains the other: order might matter

We are interested in cases where the order matters:
Rules Rewrites Critical Pair
X0 ⇒ 1
0Y ⇒ 0

00 rewrites to 0 and
to 1

⟨0, 1⟩

X · e ⇒ X
(X · Y) · Z ⇒ X · (Y · Z)

(x · e) · z rewrites to
x · z and x · (e · z)

⟨x · z, x · (e · z)⟩



Critical Pairs
Given two rules L1 ⇒ R1 and L2 ⇒ R2, we are concerned with the
case when there exists a non-variable sub-term s of L1 such that
s[θ] = L2[θ], with most general unifier θ.

Applying these rules in different orders gives rise to a critical pair,
where L1[θ]{R2[θ]/s[θ]} denotes replacing s[θ] by R2[θ] in L1[θ].

L1[θ]

R1[θ] L1[θ]{R2[θ]/s[θ]}

⟨R1[θ], L1[θ]/{R2[θ]/s[θ]}⟩ is the critical pair.

Note: the variables in the two rules should be renamed so they do
not share any variable names.
Note: A rewrite rule may have critical pairs with itself e.g. consider
the rule f(f(x)) ⇒ g(x).
With W · e ⇒ W and (X · Y) · Z ⇒ X · (Y · Z), where X, Y and Z are
variables, we can have θ = [W/X, e/Y], any other?



Critical Pairs: Example
Consider the rewrite rules:

L1︷ ︸︸ ︷
f(f(x, y)︸ ︷︷ ︸

s

, z) ⇒
R1︷ ︸︸ ︷

f(x, f(y, z))

L2︷ ︸︸ ︷
f(i(x1), x1) ⇒

R2︷︸︸︷
e

The mgu θ, given our choice of non-variable subterm s of L1, is given
by θ = {i(x1)/x, x1/y} and by considering:

f(f(i(x1), x1), z)

f(i(x1), f(x1, z)) f(e, z)

We get the critical pair ⟨f(i(x1), f(x1, z)), f(e, z)⟩.



Testing for Local Confluence

If we can conflate (join) all the critical pairs, then have local
confluence.

Conflation for a critical pair ⟨s1, s2⟩ is when there is a t such that
s1 −→∗ t and s2 −→∗ t.

An algorithm to test for local confluence (assuming termination):
1. Find all the critical pairs in set of rewrite rules R
2. For each critical pair ⟨s1, s2⟩:

2.1 Find a normal form s′1 of s1;
2.2 Find a normal form s′2 of s2;
2.3 Check s′1 = s′2, if not then fail.



Establishing Local Confluence

Sometimes a set of rules is not locally confluent

X · e ⇒ X
f · X ⇒ X

is not locally confluent: ⟨f, e⟩ does not conflate.

We can add the rule f ⇒ e to make this critical pair joinable.

However, adding new rules requires care:
▶ Must preserve termination
▶ Might give rise to new critical pairs and so we may need to

check local confluence again.



Establishing Local Confluence: Example
Consider the set R consisting of just one rewrite rule, with x a
variable:

f(f(x)) ⇒ g(x)

which has exactly one critical pair (CP) when it is overlapped with a
renamed copy of itself f(f(y)) ⇒ g(y). The lhs f(f(x)) unifies with
the subterm f(y) of the renamed lhs to produce the mgu {f(x)/y}:

f(f(f(x)))

g(f(x)) f(g(x))

⟨g(f(x)), f(g(x))⟩ is the critical pair.

▶ This CP is not joinable, so R is not locally confluent.
▶ Adding the rule f(g(x)) ⇒ g(f(x)) to R makes the pair joinable.
▶ The enlarged R is terminating (how?), but
▶ (After renaming) new CP: ⟨g(g(z)), f(g(f(z)))⟩ arises (how?);
▶ LC test: it is joinable, f(g(f(z))) → g(f(f(z)) → g(g(z)).



Knuth-Bendix (KB) Completion Algorithm
Start with a set R of terminating rewrite rules

While there are non-conflatable critical pairs in R:
1. Take a critical pair ⟨s1, s2⟩ in R

2. Normalise s1 to s′1 and s2 to s′2 (and we know s′1 ̸= s′2)
3. if R ∪ {s′1 ⇒ s′2} is terminating then

R := R ∪ {s′1 ⇒ s′2}
else if R ∪ {s′2 ⇒ s′1} is terminating then

R := R ∪ {s′2 ⇒ s′1}
else Fail

▶ If KB succeeds then we have a locally confluent and terminating (and
hence confluent) rewrite set (KB may run forever!)

▶ Depends on the termination check: define a measure and use that to
test for termination.



Summary

▶ Rewriting (Bundy Ch. 9)
▶ Local confluence
▶ Local confluence + Termination = Confluence
▶ Canonical Normal Forms
▶ Critical Pairs and Knuth-Bendix Completion


