
Automated Reasoning

Lecture 12: Rewriting I

Jacques Fleuriot
jdf@inf.ed.ac.uk

jdf@inf.ed.ac.uk


Recap

▶ Previously:
▶ Unification

▶ This time: Rewriting
▶ Sets of rewrite rules
▶ Termination
▶ Rewriting in Isabelle



Term Rewriting
Rewriting is a technique for replacing terms in an expression with
equivalent terms.

For example, the rules:

x ∗ 0 ⇒ 0 x+ 0 ⇒ x

can be used to simplify an expression:

x+ (x ∗ 0) −→ x+ 0 −→ x

We use the notation L ⇒ R to define a rewrite rule that replaces the
term L with the term R in an expression and s −→ t to denote a
rewrite rule application, where expression s gets rewritten to an
expression t.

In general, rewrite rules contain (meta-)variables (e.g., X+ 0 ⇒ X),
and are instantiated using matching (one-way unification).



The Power of Rewrites

Given this set of rules:

0 + N ⇒ N (1)
(0 ≤ N) ⇒ True (2)
s(M) + N ⇒ s(M+ N) (3)
s(M) ≤ s(N) ⇒ M ≤ N (4)

We can prove this statement:

0 + s(0) ≤ s(0) + x
−→ s(0) ≤ s(0) + x by (1)

−→ s(0) ≤ s(0 + x) by (3)

−→ 0 ≤ 0 + x by (4)
−→ True by (2)



Symbolic Computation

Given this set of rules:

0 + N ⇒ N (1)
s(M) + N ⇒ s(M+ N) (2)
0 ∗ N ⇒ 0 (3)
s(M) ∗ N ⇒ (M ∗ N) + N (4)

(s(x) means “successor of x”, i.e. 1 + x)

We can rewrite 2 ∗ x to x+ x:

s(s(0)) ∗ x
−→ (s(0) ∗ x) + x by (4)
−→ ((0 ∗ x) + x) + x by (4)
−→ (0 + x) + x by (3)
−→ x+ x by (1)



Rewrite Rule of Inference

P{t} L ⇒ R L[θ] ≡ t

P{R[θ]}

where P{t} means that P contains t somewhere inside it.
Note: rewriting uses matching, not unification (the substitution θ is
not applied to t).

Example
Given an expression (s(a) + s(0)) + s(b)

and a rewrite rule s(X) + Y ⇒ s(X+ Y)
we can find t = s(a) + s(0)

and θ = [a/X, s(0)/Y]

to yield s(a+ s(0)) + s(b)



Restrictions

A rewrite rule α ⇒ β must satisfy the following restrictions:
▶ α is not a variable.

For example, x ⇒ x+ 0 is not allowed. If the LHS can match
anything, then it’s very hard to control.

▶ vars(β) ⊆ vars(α).
This rules out 0 ⇒ 0× x for example. This ensures that if we
start with a ground term, we will always have a ground term.



More on Notation

▶ Rewrite rules: L ⇒ R, as we’ve seen already.

▶ Rewrite rule applications: s −→ t
e.g., s(s(0)) ∗ x −→ (s(0) ∗ x) + x

▶ Multiple (zero or more) rewrite rule applications: s −→∗ t
e.g., s(s(0)) ∗ x −→∗ x+ x
e.g., 0 −→∗ 0

▶ Back-and-forth:
▶ s ↔ t for s −→ t or t −→ s
▶ s ↔∗ t for a chain of zero or more ui such that

s ↔ u1 ↔ ... ↔ un ↔ t



Logical Interpretation

A rewrite rule L ⇒ R on its own is just a “replace” instruction.

To be useful, it must have some logical meaning attached to it.

Most commonly, a rewrite L ⇒ R means that L = R;
▶ Rewrites can instead be based on implications and other

formulas (e.g., a = b mod n), but care is needed to make sure
that rewriting corresponds to logically valid steps.

e.g., if A → B means A implies B, then it is safe to rewrite A to B
in A ∧ C, but not in ¬A ∧ C. Why?



How to choose rewrite rules?

There are often many equalities to choose from:

X+ Y = Y+ X X+ (Y+ Z) = (X+ Y) + Z X+ 0 = X

0 + X = X 0 + (X+ Y) = Y+ X ...

Could all be valid rewrite rules.

But: Not everything that can be rewrite rule should be a rewrite rule!
▶ Ideally, a set of rewrite rules should be terminating
▶ Ideally, they should rewrite to a canonical normal form



An Example: Algebraic Simplification

Rules: Example:

x ∗ 0 ⇒ 0 (1)
1 ∗ x ⇒ x (2)
x0 ⇒ 1 (3)

x+ 0 ⇒ x (4)

a2∗0 ∗ 5 + b ∗ 0
−→ a0 ∗ 5 + b ∗ 0 by (1)
−→ 1 ∗ 5 + b ∗ 0 by (3)
−→ 5 + b ∗ 0 by (2)
−→ 5 + 0 by (1)
−→ 5 by (4)

Any subexpresson that can be rewritten (i.e. matches the LHS of a
rewrite rule) is called a redex (reducible expression).

The redexes used (but not all redexes) have been underlined above.

Choices: Which redex to choose? Which rule to choose?



The Rewrite Search Tree
In general, get a tree of possible rewrites:

a2∗0 ∗ 5 + b ∗ 0

a0 ∗ 5 + b ∗ 0

1 ∗ 5 + b ∗ 0 a0 ∗ 5 + 0

a2∗0 ∗ 5 + 0

a0 ∗ 5 + 0 a2∗0 ∗ 5

Common strategies:
▶ Innermost (inside-out) leftmost redex
▶ Outermost (outside-in) leftmost redex

Important questions:
▶ Is the tree finite? (does the rewriting always terminate?)
▶ Does it matter which path we take? (is every leaf the same?)



Termination

We say that a set of rewrite rules is terminating if:
starting with any expression, successively applying rewrite
rules eventually brings us to a state where no rule applies.

Also called (strongly) normalizing or noetherian.

All the rewrite sets so far in this lecture are terminating

Examples of rules that may cause non-termination:
▶ Reflexive rules: e.g. 0 ⇒ 0

▶ Self-commuting rewrites: e.g. X ∗ Y ⇒ Y ∗ X, but not with a
lexicographical measure.

▶ Commuting pairs of rewrites: e.g.:
X+ (Y+ Z) ⇒ (X+ Y) + Z and (X+ Y) + Z ⇒ X+ (Y+ Z)

An expression to which no rewrite rules apply is called a normal
form (with respect to that set of rewrite rules).



Proving Termination

Termination can be shown in some cases by:
1. defining a natural number measure on expressions
2. such that each rewrite rule decreases the measure

Measure cannot go below zero, so any sequence will terminate.

Example:

x ∗ 0 ⇒ 0 (1)
1 ∗ x ⇒ x (2)
x0 ⇒ 1 (3)

x+ 0 ⇒ x (4)

For these rules, define the measure of an
expression as the number of binary oper-
ations (+, −−, ∗) it contains.

Every rule removes a binary operation, so
each rule application will reduce the over-
all measure of an expression.

In general: look for a well-founded termination order (e.g.,
lexicographical path ordering (LPO))



Examples (from Past Exams)

▶ Consider the following rewrite rule:

f(f(x)) ⇒ f(g(f(x)))

Is it terminating? If so, why?
▶ How about:

−(x+ y) ⇒ (−− x+ y) + y

where x and y are variables? Can you show that it is
non-terminating?



Interlude: Rewriting in Isabelle

Isabelle has two rules for primitive rewriting (useful with erule):

subst : J?s =?t; ?P ?sK =⇒?P ?t
ssubst : J?t =?s; ?P ?sK =⇒?P ?t

The ?P is matched against the term using higher-order unification.

There is also a tactic that rewrites using a theorem:

apply (subst theorem) : rewrites goal using theorem
apply (subst (asm) theorem) : rewrites assumptions using theorem
apply (subst (i1 i2...) theorem) : rewrites goal at positions i1, i2, ...
apply (subst (asm) (i1 i2...) theorem) : rewrites assumptions at positions i1, i2, ...

Working out what the right positions are is essentially just trial and
error, and can be quite brittle.



The Isabelle Simplifier

The methods (tactics) simp and auto:
▶ simp does automatic rewriting on the first subgoal, using a

database of rules also known as a simpset.
▶ auto simplifies all subgoals, not just the first one.
▶ auto also applies all obvious logical (Natural Deduction) steps:

▶ splitting conjunctive goals and disjunctive assumptions
▶ quantifier removals – which ones?

Adding [simp] after a lemma (or theorem) name when declaring it
adds that lemma to the simplifier’s database/simpset.

▶ If it is not an equality, then it is treated as P = True.
▶ Many rules are already added to the default simpset – so the

simplifier often appears quite magical.



The Isabelle Simplifier
Variations on simp and auto enable control over the rules used:

▶ simp add: … del: : …
▶ simp only: : …
▶ simp (no_asm) – ignore assumptions
▶ simp (no_asm_simp) – use assumps, but do not rewrite them
▶ simp (no_asm_use) – rewrite assumps, don’t use them
▶ auto simp add: … del: …

A few specialised simpsets (for arithmetic reasoning):
▶ add_ac and mult_ac: associative/commutative properties of

addition and multiplication
▶ algebra_simps: useful for multiplying out polynomials
▶ field_simps: useful for multiplying out denominators when

proving inequalities e.g. auto simp add: field_simps

Note Every definition defn in Isabelle generates an associated
rewrite rule defn_def.



The Isabelle Simplifier
The Isabelle simplifier also has more bells and whistles:
1. Conditional rewriting: Apply JP1; . . . ; PnK =⇒ s = t if

▶ the lhs s matches some expression and
▶ Isabelle can recursively prove P1, ..., Pn by rewriting.

Example: J prove︷ ︸︸ ︷
a ̸= 0; b ̸= 0K =⇒

match︷ ︸︸ ︷
b/(a ∗ b) = 1/a

2. (Termination of) Ordered rewriting: a lexicographical
(dictionary) ordering is used to prevent (some) loops like:

a+ b −→ b+ a −→ a+ b −→ . . .

Using x+ y = y+ x as a rewrite rule is actually okay in Isabelle.
3. Case splitting:

?P (case ?x of True ⇒?f1|False ⇒?f2)
= ((?x = True −→?P ?f1) ∧ (?x = False −→?P ?f2))

Applies when there is an explicit case split in the goal



Summary

▶ Rewriting (Bundy Ch. 9)
▶ Rewriting expressions using rules
▶ Termination (by strictly decreasing measure)

▶ Rewriting in Isabelle (Isabelle Tutorial, Section 3.1)
▶ Next time: More on Rewriting


