Automated Reasoning

Lecture 11: Unification

Jacques Fleuriot jdf@inf.ed.ac.uk

Recap

- This lecture:
 - Solving equations by Unification
 - Matching and Unification algorithms
 - ▶ Building-in axioms: *E*-Unification

Motivation

Unification: finding a common instance of two terms

Informally: we want to make two terms **identical** by finding the **most general substitution** of terms for variables.

Why?

- ► Applying rules in Isabelle: working out what ?*P*, ?*Q*, ?*x* are
- Heavily used in automated first-order theorem proving to postpone decisions during proof search: PROLOG, tableau provers, resolution provers
- Also used in most type inference algorithms (Haskell, OCaml, SML, Scala, ...)

A First Look at Unification

Unification: finding a common instance of two terms

Informally: we want to make two terms **identical** by finding the **most general substitution** of terms for variables.

Example

Can we make these pairs of terms equal by finding a common instance (assuming *X*, *Y* are variables and *a*, *b* are constants)?

f(X, b) and $f(a, Y)$	Yes: $[a/X, b/Y]$	instance: $f(a, b)$
f(X, X) and $f(a, b)$	No	
f(X, X) and $f(Y, g(Y))$	No	

Only (meta-)variables (X, Y, Z, ...) can be replaced by other terms.

Matching

Problem

Given pattern and target find a substitution such that:

 $pattern[substitution] \equiv target$

where \equiv means that the terms are identical.

Example

$$(s(X) + Y)[0/X, s(0)/Y] \equiv (s(0) + s(0))$$

How we do find an adequate substitution?

We view matching as equation solving.

Matching (continued)

Discover a substition by decomposing the equation to be solved along the term trees:

0

0

Some Abbreviations

Term	Meaning	
\overrightarrow{t}	$t_1, \dots, t_n (t \ge 1)$	
$\bigwedge_i t_i$	$t_1 \wedge \wedge t_n$	
vars(t)	the set of free variables in t	
Vars	the set of (all) free variables	

$$vars(f(X, Y, g(a, Z, X))) = \{X, Y, Z\}$$

 $vars(f(a, b, c)) = \{\}$

Matching as Equation Solving

Start with the *pattern* and *target* standardised apart:

 $vars(pattern) \cap vars(target) = \{\}$

Goal is to solve for *vars*(*pattern*) in equation *pattern* \equiv *target*.

Strategy is to use transformation rules:

$$pattern \equiv target$$

$$\downarrow$$

$$\vdots$$

$$\downarrow$$

$$X_1 \equiv t_1 \land \dots \land X_n \equiv t_n$$

Resulting substitution is $[t_1/X_1, ..., t_n/X_n]$.

Transformations end in failure if no match is possible.

Transformation Rules for Matching (Examples)

Decompose	$s(X) + Y \equiv s(0) + s(0)$ \downarrow $s(X) \equiv s(0) \land Y \equiv s(0)$	
	$\frac{\mathbf{s}(X) \equiv \mathbf{s}(0) \land \mathbf{I} \equiv \mathbf{s}(0)}{\mathbf{s}(X) + \mathbf{y} \equiv \mathbf{s}(0)}$	
Conflict	J(X) + y = J(0)	Cannot match: $s \not\equiv +$
	fail	
	$(X+Y \equiv s(0)+0) \land (Y \equiv 0)$	
Eliminate	\downarrow	
	$(X+0 \equiv s(0)+0) \land (Y \equiv 0)$	
	$X \equiv 0 \land (s(0) + 0 \equiv s(0) + 0)$	
Delete	\downarrow	
	$X \equiv 0$	

Transformation Rules for Matching

Assumptions: *s* and *t* are arbitrary terms and are standardised apart.

Name	Before	After	Condition
Decompose	$P \wedge f(\overrightarrow{s}) \equiv f(\overrightarrow{t})$	$P \wedge \bigwedge_i s_i \equiv t_i$	
Conflict	$P \wedge f(\overrightarrow{s}) \equiv g\left(\overrightarrow{t}\right)$	fail	$f \neq g$
Eliminate	$P \wedge X \equiv t$	$P[t/X] \wedge X \equiv t$	$X \in \operatorname{vars}(P)$
Delete	$P \wedge t \equiv t$	Р	

Algorithm terminates when no further rules apply and fail has not occurred.

The algorithm terminates with a match iff there is one.

The algorithm may terminate without a match: e.g., $X \equiv a \land b \equiv Y$

Unification

Unification is two-way matching (there is no distinction between pattern and target).

$$term_1[substitution] \equiv term_2[substitution]$$

Example

What substitution makes (s(X) + s(0)) and (s(0) + Y) identical?

 $\theta = [0/X, s(0)/Y]$

We need to add extra rules to the matching algorithm:

$$(s(X) + s(0)) \equiv (s(0) + Y)$$

$$\downarrow \qquad Decompose$$

$$s(X) \equiv s(0) \land s(0) \equiv Y$$

$$\downarrow \qquad Decompose$$

$$X \equiv 0 \land s(0) \equiv Y$$

$$\downarrow \qquad Switch$$

$$X \equiv 0 \land Y \equiv s(0)$$

New Transformation Rules

Switch $t \equiv X$ \downarrow $X \equiv t$

Switch rule applies only if *lhs* is not originally a variable

Example

 $f(X, X) \equiv f(Y, Y + 1)$ $\downarrow \text{ Decompose}$ $X \equiv Y \land X \equiv Y + 1$ $\downarrow \text{ Coalesce}$ $X \equiv Y \land Y \equiv Y + 1$ $\downarrow \text{ Occurs check}$ fail

$$p(X) \land X \equiv X + 1$$

$$\downarrow \text{ Eliminate}$$

$$p(X+1) \land X \equiv X + 1$$

$$\downarrow \text{ Eliminate}$$

$$p((X+1) + 1) \land X \equiv X + 1$$

$$\downarrow \text{ Eliminate}$$

$$\dots$$

 $(V) \wedge V = V + 1$

Non-termination can result without the occurs check.

Coalesce

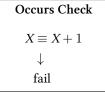
$$X \equiv Y + 1 \land Y \equiv X$$

$$\downarrow$$

$$X \equiv X + 1 \land Y \equiv X$$
Cimilar to Eliminate accent

0 1

Similar to Eliminate, except both *lhs* and *rhs* are variables



lhs cannot occur in rhs

Unification Algorithm

Name	Before	After	Condition
Decompose	$P \wedge f(\overrightarrow{s}) \equiv f(\overrightarrow{t})$	$P \wedge \bigwedge_i s_i \equiv t_i$	
Conflict	$P \wedge f(\overrightarrow{s}) \equiv g\left(\overrightarrow{t}\right)$	fail	$f \not\equiv g$
Switch	$P \wedge s \equiv X$	$P \wedge X \equiv s$	$X \in Vars$
			s∉ Vars
Delete	$P \wedge s \equiv s$	Р	
Eliminate	$P \wedge X \equiv s$	$P[s/X] \wedge X \equiv s$	$X \in vars(P)$
			$X \not\in vars(s)$
			s∉ Vars
Occurs Check	$P \wedge X \equiv s$	fail	$X \in vars(s)$
			s∉ Vars
Coalesce	$P \wedge X \equiv Y$	$P[Y/X] \land X \equiv Y$	$X, Y \in vars(P)$
			$X \not\equiv Y$

Assumptions: *s* and *t* are arbitrary terms and $Vars = vars(s) \cup vars(t)$.

Conditions ensure that at most one rule applies to each conjunct

Algorithm terminates with success when no further rules apply.

Definition

If ϕ and θ are substitutions then their *composition* $\phi \circ \theta$ is also a substitution which, for any term *t*, satisfies the following property:

 $\mathit{t}[\phi \circ \theta] \equiv (\mathit{t}[\phi])[\theta]$

Definition

If ϕ and θ are substitutions then their *composition* $\phi \circ \theta$ is also a substitution which, for any term *t*, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

$$[a/x] \circ [b/y] = [a/x, b/y]$$

Definition

If ϕ and θ are substitutions then their *composition* $\phi \circ \theta$ is also a substitution which, for any term *t*, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

$$\begin{matrix} [a/x] \circ [b/y] = [a/x, b/y] \\ [g(y)/x] \circ [b/y] = [g(b)/x, b/y] \end{matrix}$$

Definition

If ϕ and θ are substitutions then their *composition* $\phi \circ \theta$ is also a substitution which, for any term *t*, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

$$\begin{split} & [a/x] \circ [b/y] = [a/x, b/y] \\ & [g(y)/x] \circ [b/y] = [g(b)/x, b/y] \\ & [a/x] \circ [b/x] = [a/x] \end{split}$$

Definition

If ϕ and θ are substitutions then their *composition* $\phi \circ \theta$ is also a substitution which, for any term *t*, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

$$\begin{split} & [a/x] \circ [b/y] = [a/x, b/y] \\ & [g(y)/x] \circ [b/y] = [g(b)/x, b/y] \\ & [a/x] \circ [b/x] = [a/x] \end{split}$$

- Equality of substitutions: $\phi = \theta$ if $x[\phi] = x[\theta]$ for any variable *x*.
- ▶ Properties: $(\phi \circ \theta) \circ \sigma = \phi \circ (\theta \circ \sigma), \phi \circ [] = \phi$ and $[] \circ \phi = \phi$.
- Composition is needed to define the notion of a *most general* unifier.

Properties of the Unification Algorithm

- The algorithm will find a unifier, if it exists.
- It returns the **most general unifier** (mgu) θ .

Definition

Given any two terms *s* and *t*, θ is their mgu if:

$$s[\theta] \equiv t[\theta] \land \forall \phi. \ s[\phi] \equiv t[\phi] \to \exists \psi. \ \phi = \theta \circ \psi.$$

Consider g(g(X)) and g(Y). Is [g(3)/Y, 3/X] a unifier? Is it the mgu?

- mgu is unique up to alphabetic variance;
- ► the algorithm can easily be extended to simultaneous unification on *n* expressions.

Building-in Axioms

General Scheme:

$$(Ax_1 \cup Ax_2) + unif \Longrightarrow Ax_1 + unif_{Ax_2}.$$

Some axioms of the theory become built into unification.

Example

Commutative-Unification

How do we deal with this? We can add a new transformation rule (**Mutate rule**).

Unification Algorithm for Commutativity

Name	Before	After	Condition
Decompose	$P \wedge f\left(\overrightarrow{s}\right) = f\left(\overrightarrow{t}\right)$	$P \wedge \bigwedge_i s_i = t_i$	
Conflict	$P \wedge f(\overrightarrow{s}) = g\left(\overrightarrow{t}\right)$	fail	$f \neq g$
Switch	$P \wedge s = X$	$P \wedge X = s$	$X \in Vars$
			s ∉ Vars
Delete	$P \wedge s = s$	Р	
Eliminate	$P \wedge X = s$	$P[s/X] \wedge X = s$	$X \in vars(P)$
			$X \not\in vars(s)$
			s ∉ Vars
Check	$P \wedge X = s$	fail	$X \in vars(s)$
			s ∉ Vars
Coalesce	$P \wedge X = Y$	$P[Y/X] \land X = Y$	$X, Y \in vars(P)$
			$X \neq Y$
Mutate	$P \wedge f(s_1, t_1) = f(s_2, t_2)$	$P \wedge s_1 = t_2 \wedge t_1 = s_2$	f is commutative

Decompose and Mutate rules overlap.

Most General Unifiers

For ordinary unification, the mgu is unique, but what happens when new rules are built-into the unification algorithm?

Multiple mgus: Commutative unification

$$X + Y = a + b \longrightarrow \begin{cases} X = a \land Y = b \\ X = b \land Y = a \end{cases}$$
 Both are equally general.

Infinitely many mgus: Associative unification X + (Y + Z) = (X + Y) + Z.

$$X + a = a + X \longrightarrow \begin{cases} X = a \\ X = a + a \\ X = a + a + a \\ \dots \end{cases}$$
 All independent
 $X = a + a + a$ (not unifiable).

No mgus: Build in f(0, X) = X and g(f(X, Y)) = g(Y):

$$g(X) = g(a) \longrightarrow \begin{cases} X = a & \text{Many unifiers} \\ X = f(Y_1, a) & \text{but no mgu.} \end{cases}$$

Types of Unification

- Unitary A single unique mgu, or none (predicate logic).
- Finitary Finite number of mgus (predicate logic with commutativity).
- **Infinitary** Possibly infinite number of mgus (predicate logic with associativity).

Nullary No mgus exist, although unifiers may exist.

Undecidable Unification not decidable – no algorithm.

Types of Unification

Axioms	Туре	Decidable
nil	unitary	yes
commutative	finitary	yes
associative	infinitary	yes
assoc. + dist.	infinitary	yes
lambda calculus	infinitary	no
λ -calculus pattern fragment	unitary	yes

Summary

- Unification (Bundy Ch. 17.1 17.4)
 - Algorithms for matching and unification.
 - Unification as equation solving.
 - Transformation rules for equation solving.
 - Building-in axioms.(E-Unification/Semantic Unification)
 - Most general unifiers and classification.
- Next time: Proof by rewriting