
Automated Reasoning

Lecture 11: Unification

Jacques Fleuriot
jdf@inf.ed.ac.uk

jdf@inf.ed.ac.uk


Recap

▶ This lecture:
▶ Solving equations by Unification
▶ Matching and Unification algorithms
▶ Building-in axioms: E-Unification



Motivation

Unification: finding a common instance of two terms

Informally: we want to make two terms identical by finding the
most general substitution of terms for variables.

Why?
▶ Applying rules in Isabelle: working out what ?P, ?Q, ?x are
▶ Heavily used in automated first-order theorem proving to

postpone decisions during proof search: Prolog, tableau
provers, resolution provers

▶ Also used in most type inference algorithms (Haskell, OCaml,
SML, Scala, …)



A First Look at Unification

Unification: finding a common instance of two terms

Informally: we want to make two terms identical by finding the
most general substitution of terms for variables.

Example
Can we make these pairs of terms equal by finding a common
instance (assuming X, Y are variables and a, b are constants)?

f (X, b) and f (a, Y) Yes: [a/X, b/Y] instance: f (a, b)
f (X,X) and f (a, b) No

f (X,X) and f (Y, g (Y)) No

Only (meta-)variables (X, Y,Z, ...) can be replaced by other terms.



Matching

Problem
Given pattern and target find a substitution such that:

pattern[substitution] ≡ target

where ≡ means that the terms are identical.

Example

(s(X) + Y)[0/X, s(0)/Y] ≡ (s(0) + s(0))

How we do find an adequate substitution?

We view matching as equation solving.



Matching (continued)

Discover a substition by decomposing the equation to be solved
along the term trees:

(s(X) + Y) ≡ (s(0) + s(0))
↓

(s(X) ≡ s(0)) ∧ (Y ≡ s(0))
↓

(X ≡ 0) ∧ (Y ≡ s(0))

+

��
��
��

00
00
00

s Y

X

+

��
��
��

00
00
00

s s

0 0



Some Abbreviations

Term Meaning
−→t t1, ..., tn (t ≥ 1)∧
i ti t1 ∧ ... ∧ tn

vars(t) the set of free variables in t
Vars the set of (all) free variables

vars(f (X, Y, g (a,Z,X))) = {X, Y,Z}

vars(f (a, b, c)) = {}



Matching as Equation Solving

Start with the pattern and target standardised apart:

vars(pattern) ∩ vars(target) = {}

Goal is to solve for vars(pattern) in equation pattern ≡ target.

Strategy is to use transformation rules:

pattern ≡ target
↓
...
↓

X1 ≡ t1 ∧ ... ∧ Xn ≡ tn

Resulting substitution is [t1/X1, ..., tn/Xn].

Transformations end in failure if no match is possible.



Transformation Rules for Matching (Examples)

Decompose
s(X) + Y ≡ s(0) + s(0)

↓
s(X) ≡ s(0) ∧ Y ≡ s(0)

Conflict
s(X) + y ≡ s(0)

↓
fail

Cannot match: s ̸≡ +

Eliminate
(X+ Y ≡ s(0) + 0) ∧ (Y ≡ 0)

↓
(X+ 0 ≡ s(0) + 0) ∧ (Y ≡ 0)

Delete
X ≡ 0 ∧ (s(0) + 0 ≡ s(0) + 0)

↓
X ≡ 0



Transformation Rules for Matching

Assumptions: s and t are arbitrary terms and are standardised apart.

Name Before After Condition

Decompose P ∧ f
(−→s ) ≡ f

(−→t ) P ∧
∧

i si ≡ ti

Conflict P ∧ f
(−→s ) ≡ g

(−→t ) fail f ̸= g

Eliminate P ∧ X ≡ t P[t/X] ∧ X ≡ t X ∈ vars(P)
Delete P ∧ t ≡ t P

Algorithm terminates when no further rules apply and fail has not
occurred.

The algorithm terminates with a match iff there is one.

The algorithm may terminate without a match: e.g., X ≡ a ∧ b ≡ Y



Unification
Unification is two-way matching (there is no distinction between
pattern and target).

term1[substitution] ≡ term2[substitution]

Example
What substitution makes (s(X) + s(0)) and (s(0) + Y) identical?

θ = [0/X, s(0)/Y]

We need to add extra rules to the matching algorithm:

(s(X) + s(0)) ≡ (s(0) + Y)
↓ Decompose

s(X) ≡ s(0) ∧ s(0) ≡ Y
↓ Decompose

X ≡ 0 ∧ s(0) ≡ Y
↓ Switch

X ≡ 0 ∧ Y ≡ s(0)



New Transformation Rules
Switch

t ≡ X
↓

X ≡ t
Switch rule applies only if
lhs is not originally a
variable

Coalesce

X ≡ Y+ 1 ∧ Y ≡ X
↓

X ≡ X+ 1 ∧ Y ≡ X
Similar to Eliminate, except
both lhs and rhs are variables

Occurs Check

X ≡ X+ 1

↓
fail

lhs cannot occur in rhs

Example

f(X,X) ≡ f(Y, Y+ 1) p(X) ∧ X ≡ X+ 1

↓ Decompose ↓ Eliminate
X ≡ Y ∧ X ≡ Y+ 1 p(X+ 1) ∧ X ≡ X+ 1

↓ Coalesce ↓ Eliminate
X ≡ Y ∧ Y ≡ Y+ 1 p((X+ 1) + 1) ∧ X ≡ X+ 1

↓ Occurs check ↓ Eliminate
fail . . .

Non-termination can result without the occurs check.



Unification Algorithm

Assumptions: s and t are arbitrary terms and Vars = vars(s) ∪ vars(t).
Name Before After Condition

Decompose P ∧ f
(−→s ) ≡ f

(−→t ) P ∧
∧

i si ≡ ti

Conflict P ∧ f
(−→s ) ≡ g

(−→t ) fail f ̸≡ g

Switch P ∧ s ≡ X P ∧ X ≡ s X ∈ Vars
s ̸∈ Vars

Delete P ∧ s ≡ s P
Eliminate P ∧ X ≡ s P[s/X] ∧ X ≡ s X ∈ vars(P)

X ̸∈ vars(s)
s ̸∈ Vars

Occurs Check P ∧ X ≡ s fail X ∈ vars(s)
s ̸∈ Vars

Coalesce P ∧ X ≡ Y P[Y/X] ∧ X ≡ Y X, Y ∈ vars(P)
X ̸≡ Y

▶ Conditions ensure that at most one rule applies to each conjunct

▶ Algorithm terminates with success when no further rules apply.



Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition ϕ ◦ θ is also a
substitution which, for any term t, satisfies the following property:

t[ϕ ◦ θ] ≡ (t[ϕ])[θ]

Examples:
[a/x] ◦ [b/y] = [a/x, b/y]
[g(y)/x] ◦ [b/y] = [g(b)/x, b/y]
[a/x] ◦ [b/x] = [a/x]

▶ Equality of substitutions: ϕ = θ if x[ϕ] = x[θ] for any variable x.
▶ Properties: (ϕ ◦ θ) ◦ σ = ϕ ◦ (θ ◦ σ), ϕ ◦ [] = ϕ and [] ◦ ϕ = ϕ.
▶ Composition is needed to define the notion of a most general

unifier.



Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition ϕ ◦ θ is also a
substitution which, for any term t, satisfies the following property:

t[ϕ ◦ θ] ≡ (t[ϕ])[θ]

Examples:
[a/x] ◦ [b/y] = [a/x, b/y]

[g(y)/x] ◦ [b/y] = [g(b)/x, b/y]
[a/x] ◦ [b/x] = [a/x]

▶ Equality of substitutions: ϕ = θ if x[ϕ] = x[θ] for any variable x.
▶ Properties: (ϕ ◦ θ) ◦ σ = ϕ ◦ (θ ◦ σ), ϕ ◦ [] = ϕ and [] ◦ ϕ = ϕ.
▶ Composition is needed to define the notion of a most general

unifier.



Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition ϕ ◦ θ is also a
substitution which, for any term t, satisfies the following property:

t[ϕ ◦ θ] ≡ (t[ϕ])[θ]

Examples:
[a/x] ◦ [b/y] = [a/x, b/y]
[g(y)/x] ◦ [b/y] = [g(b)/x, b/y]

[a/x] ◦ [b/x] = [a/x]

▶ Equality of substitutions: ϕ = θ if x[ϕ] = x[θ] for any variable x.
▶ Properties: (ϕ ◦ θ) ◦ σ = ϕ ◦ (θ ◦ σ), ϕ ◦ [] = ϕ and [] ◦ ϕ = ϕ.
▶ Composition is needed to define the notion of a most general

unifier.



Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition ϕ ◦ θ is also a
substitution which, for any term t, satisfies the following property:

t[ϕ ◦ θ] ≡ (t[ϕ])[θ]

Examples:
[a/x] ◦ [b/y] = [a/x, b/y]
[g(y)/x] ◦ [b/y] = [g(b)/x, b/y]
[a/x] ◦ [b/x] = [a/x]

▶ Equality of substitutions: ϕ = θ if x[ϕ] = x[θ] for any variable x.
▶ Properties: (ϕ ◦ θ) ◦ σ = ϕ ◦ (θ ◦ σ), ϕ ◦ [] = ϕ and [] ◦ ϕ = ϕ.
▶ Composition is needed to define the notion of a most general

unifier.



Composition of Unifiers (Substitutions)

Definition
If ϕ and θ are substitutions then their composition ϕ ◦ θ is also a
substitution which, for any term t, satisfies the following property:

t[ϕ ◦ θ] ≡ (t[ϕ])[θ]

Examples:
[a/x] ◦ [b/y] = [a/x, b/y]
[g(y)/x] ◦ [b/y] = [g(b)/x, b/y]
[a/x] ◦ [b/x] = [a/x]

▶ Equality of substitutions: ϕ = θ if x[ϕ] = x[θ] for any variable x.
▶ Properties: (ϕ ◦ θ) ◦ σ = ϕ ◦ (θ ◦ σ), ϕ ◦ [] = ϕ and [] ◦ ϕ = ϕ.
▶ Composition is needed to define the notion of a most general

unifier.



Properties of the Unification Algorithm

▶ The algorithm will find a unifier, if it exists.
▶ It returns the most general unifier (mgu) θ.

Definition
Given any two terms s and t, θ is their mgu if:

s[θ] ≡ t[θ] ∧ ∀ϕ. s[ϕ] ≡ t[ϕ] → ∃ψ. ϕ = θ ◦ ψ.

Consider g(g(X)) and g(Y). Is [g(3)/Y, 3/X] a unifier? Is it the
mgu?

▶ mgu is unique up to alphabetic variance;
▶ the algorithm can easily be extended to simultaneous

unification on n expressions.



Building-in Axioms

General Scheme:

(Ax1 ∪ Ax2) + unif =⇒ Ax1 + unifAx2 .

Some axioms of the theory become built into unification.

Example
Commutative-Unification

X+ 2 = Y+ 3

↓ We no longer use ≡ but =
Y = 2 ∧ X = 3

How do we deal with this?
We can add a new transformation rule (Mutate rule).



Unification Algorithm for Commutativity

Name Before After Condition
Decompose P ∧ f

(−→s )
= f

(−→t ) P ∧
∧

i si = ti
Conflict P ∧ f

(−→s )
= g

(−→t ) fail f ̸= g
Switch P ∧ s = X P ∧ X = s X ∈ Vars

s ̸∈ Vars
Delete P ∧ s = s P
Eliminate P ∧ X = s P[s/X] ∧ X = s X ∈ vars(P)

X ̸∈ vars(s)
s ̸∈ Vars

Check P ∧ X = s fail X ∈ vars(s)
s ̸∈ Vars

Coalesce P ∧ X = Y P[Y/X] ∧ X = Y X, Y ∈ vars(P)
X ̸= Y

Mutate P ∧ f (s1, t1) = f (s2, t2) P ∧ s1 = t2 ∧ t1 = s2 f is commutative

Decompose and Mutate rules overlap.



Most General Unifiers
For ordinary unification, the mgu is unique, but what happens when
new rules are built-into the unification algorithm?
Multiple mgus: Commutative unification

X+ Y = a+ b −→
{

X = a ∧ Y = b
X = b ∧ Y = a Both are equally general.

Infinitely many mgus: Associative unification X+ (Y+ Z) = (X+ Y) + Z.

X+ a = a+ X −→


X = a
X = a+ a
X = a+ a+ a
. . .

All independent
(not unifiable).

No mgus: Build in f(0,X) = X and g (f(X, Y)) = g(Y):

g(X) = g(a) −→

 X = a
X = f (Y1, a)
X = f (Y1, f (Y2, a))

Many unifiers
but no mgu.



Types of Unification

Unitary A single unique mgu, or none (predicate logic).
Finitary Finite number of mgus (predicate logic with

commutativity).
Infinitary Possibly infinite number of mgus (predicate logic with

associativity).
Nullary No mgus exist, although unifiers may exist.

Undecidable Unification not decidable — no algorithm.



Types of Unification

Axioms Type Decidable
nil unitary yes
commutative finitary yes
associative infinitary yes
assoc. + dist. infinitary yes
lambda calculus infinitary no
λ-calculus pattern fragment unitary yes



Summary

▶ Unification (Bundy Ch. 17.1 - 17.4)
▶ Algorithms for matching and unification.
▶ Unification as equation solving.
▶ Transformation rules for equation solving.
▶ Building-in axioms.(E-Unification/Semantic Unification)
▶ Most general unifiers and classification.

▶ Next time: Proof by rewriting


