
Automated Reasoning

Lecture 9: Isar – A Language for Structured
Proofs

Jacques Fleuriot
jdf@inf.ed.ac.uk

Acknowledgement: Tobias Nipkow kindly provided the slides for this lecture

jdf@inf.ed.ac.uk


Apply scripts

▶ unreadable

▶ hard to maintain
▶ do not scale

No structure!



Apply scripts

▶ unreadable
▶ hard to maintain

▶ do not scale

No structure!



Apply scripts

▶ unreadable
▶ hard to maintain
▶ do not scale

No structure!



Apply scripts

▶ unreadable
▶ hard to maintain
▶ do not scale

No structure!



Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with comments

But: apply still useful for proof exploration
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A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1
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Isar core syntax

proof = proof [method] step∗ qed
| by method

method = (simp . . . ) | (blast . . . ) | (induction . . . ) | …

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | …
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Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)

proof default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed
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Abbreviations

this = the previous proposition proved or assumed
then = from this
thus = then show

hence = then have



using and with

(have|show) prop using facts

=
from facts (have|show) prop

with facts
=

from facts this
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Structured lemma statement

lemma
fixes f :: “’a⇒ ’a set”
assumes s: “surj f”
shows “False”

proof - no automatic proof step
have “∃ a. {x. x /∈ f x} = f a” using s
by(auto simp: surj_def)

thus “False” by blast
qed

Proves surj f =⇒ False
but surj f becomes local fact s in proof.
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The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively



Structured lemma statements

fixes x :: τ1 and y :: τ2 …
assumes a: P and b: Q …
shows R

▶ fixes and assumes sections optional
▶ shows optional if no fixes and assumes
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Proof patterns: Case distinction

show “R”
proof cases
assume “P”
...
show “R” . . .

next
assume “¬ P”
...
show “R” . . .

qed

have “P ∨ Q” . . .
then show “R”
proof
assume “P”
...
show “R” . . .

next
assume “Q”
...
show “R” . . .

qed
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Proof patterns: ←→

show “P ←→ Q”
proof
assume “P”
...
show “Q” . . .
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...
show “P” . . .
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Proof patterns: ∀ and ∃ introduction

show “∀ x. P(x)”
proof
fix x local fixed variable
show “P(x)” . . .

qed

show “∃ x. P(x)”
proof
...
show “P(witness)” . . .

qed
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Proof patterns: ∃ elimination: obtain

have ∃ x. P(x)
then obtain x where p: P(x) by blast
... x fixed local variable

Works for one or more x
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hence ∃ a. {x. x /∈ f x} = f a by(auto simp: surj_def)
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Proof patterns: Set equality and subset

show “A = B”
proof
show “A ⊆ B” . . .

next
show “B ⊆ A” . . .

qed

show “A ⊆ B”
proof
fix x
assume “x ∈ A”
...
show “x ∈ B” . . .

qed
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Example: pattern matching

show formula1 ←→ formula2 (is ?L←→ ?R)

proof
assume ?L
...
show ?R …

next
assume ?R
...
show ?L …

qed
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?thesis

show formula

(is ?thesis)

proof -
...
show ?thesis …

qed

Every show implicitly defines ?thesis
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show formula (is ?thesis)
proof -

...
show ?thesis …

qed

Every show implicitly defines ?thesis



let

Introducing local abbreviations in proofs:

let ?t = "some-big-term"
...
have "…?t …"



Quoting facts by value

By name:
have x0: ”x > 0” …
...
from x0 …

By value:
have ”x > 0” …
...
from ‘x>0‘ …

↑ ↑
back quotes
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Example

lemma
“(∃ ys zs. xs = ys @ zs ∧ length ys = length zs) ∨
(∃ ys zs. xs = ys @ zs ∧ length ys = length zs + 1)”

proof ???
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When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …
apply - to make incoming facts

part of proof state
apply auto or whatever
apply …

At the end:
▶ done
▶ Better: convert to structured proof
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moreover—ultimately

have “P1” . . .
moreover
have “P2” . . .
moreover
...
moreover
have “Pn” . . .
ultimately
have “P” . . .

≈

have lab1: “P1” . . .
have lab2: “P2” . . .
...
have labn: “Pn” . . .
from lab1 lab2 . . .
have “P” . . .

With names
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Raw proof blocks

{ fix x1 . . . xn
assume A1 . . . Am...
have B

}

proves [[ A1; . . . ; Am ]] =⇒ B
where all x i have been replaced by ?xi.
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Proof state and Isar text

In general: proof method
Applies method and generates subgoal(s):∧

x1 . . . xn [[ A1; . . . ; Am ]] =⇒ B

How to prove each subgoal:

fix x1 . . . xn
assume A1 . . . Am...
show B

Separated by next
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Datatype case analysis

datatype t = C1 τ⃗ | …

proof (cases "term")
case (C1 x1 . . . xk)
… x j …

next
...
qed

where case (Ci x1 . . . xk) ≡
fix x1 . . . xk
assume Ci:︸︷︷︸

label

term = (Ci x1 . . . xk)︸ ︷︷ ︸
formula
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Structural induction for nat

show P(n)
proof (induction n)

case 0
...
show ?case

next
case (Suc n)
......
show ?case

qed
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Structural induction for nat

show P(n)
proof (induction n)

case 0 ≡ let ?case = P(0)
...
show ?case

next
case (Suc n) ≡ fix n assume Suc: P(n)
... let ?case = P(Suc n)...
show ?case

qed



Structural induction with =⇒

show A(n) =⇒ P(n)
proof (induction n)

case 0

≡ assume 0: A(0)

...

let ?case = P(0)

show ?case
next

case (Suc n)

≡ fix n

...

assume Suc: A(n) =⇒ P(n)
A(Suc n)

...

let ?case = P(Suc n)

show ?case
qed
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show A(n) =⇒ P(n)
proof (induction n)

case 0 ≡ assume 0: A(0)
... let ?case = P(0)
show ?case

next
case (Suc n) ≡ fix n
... assume Suc: A(n) =⇒ P(n)

A(Suc n)
... let ?case = P(Suc n)
show ?case

qed



Named assumptions

In a proof of
A1 =⇒ . . . =⇒ An =⇒ B

by structural induction:

In the context of
case C

we have
C.IH the induction hypotheses

C.prems the premises Ai

C C.IH + C.prems
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A remark on style

▶ case (Suc n) …show ?case
is easy to write and maintain

▶ fix n assume formula …show formula′
is easier to read:

▶ all information is shown locally
▶ no contextual references (e.g. ?case)
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Rule induction

inductive I :: τ ⇒ σ⇒ bool
where
rule1: . . .
...
rulen: . . .

show I x y =⇒ P x y
proof (induction rule: I.induct)

case rule1
…
show ?case

next
...
next

case rulen
…
show ?case

qed
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Fixing your own variable names

case (rulei x1 . . . xk)

Renames the first k variables in rulei (from left to right) to
x1 . . . xk.
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Rule inversion

inductive ev :: “nat ⇒ bool” where
ev0: “ev 0” |
evSS: “ev n =⇒ ev(Suc(Suc n))”

What can we deduce from ev n ?

That it was proved by either ev0 or evSS !

ev n =⇒ n = 0 ∨ (∃ k. n = Suc (Suc k) ∧ ev k)

Rule inversion = case distinction over rules
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Rule inversion template

from ‘ev n‘ have “P”
proof cases
case ev0 n = 0
...

show ?thesis . . .
next
case (evSS k) n = Suc (Suc k), ev k
...

show ?thesis . . .
qed

Impossible cases disappear automatically
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Summary

▶ Introduction to Isar and to some common proof patterns e.g.
case distinction, contradiction, etc.

▶ Structured proofs are becoming the norm for Isabelle as they
are more readable and easier to maintain.

▶ Mastering structured proof takes practice and it is usually
better to have a clear proof plan beforehand.

▶ Useful resource: Isar quick reference manual (see AR web
page).

▶ Reading: N&K (Concrete Semantics), Chapter 5.
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