
Automated Reasoning

Lecture 9: Isar – A Language for Structured
Proofs

Jacques Fleuriot
jdf@inf.ed.ac.uk

Acknowledgement: Tobias Nipkow kindly provided the slides for this lecture

jdf@inf.ed.ac.uk

Apply scripts

▶ unreadable

▶ hard to maintain
▶ do not scale

No structure!

Apply scripts

▶ unreadable
▶ hard to maintain

▶ do not scale

No structure!

Apply scripts

▶ unreadable
▶ hard to maintain
▶ do not scale

No structure!

Apply scripts

▶ unreadable
▶ hard to maintain
▶ do not scale

No structure!

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with comments

But: apply still useful for proof exploration

Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

But: apply still useful for proof exploration

Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

But: apply still useful for proof exploration

A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

Isar core syntax

proof = proof [method] step∗ qed
| by method

method = (simp . . .) | (blast . . .) | (induction . . .) | …

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | …

Isar core syntax

proof = proof [method] step∗ qed
| by method

method = (simp . . .) | (blast . . .) | (induction . . .) | …

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | …

Isar core syntax

proof = proof [method] step∗ qed
| by method

method = (simp . . .) | (blast . . .) | (induction . . .) | …

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | …

Isar core syntax

proof = proof [method] step∗ qed
| by method

method = (simp . . .) | (blast . . .) | (induction . . .) | …

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | …

Isar core syntax

proof = proof [method] step∗ qed
| by method

method = (simp . . .) | (blast . . .) | (induction . . .) | …

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | …

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)

proof default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)
proof

default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)
proof default proof: assume surj, show False

assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)
proof default proof: assume surj, show False
assume a: surj f

from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)
proof default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a

by(simp add: surj_def)
from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)
proof default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)
proof default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a

by blast
from c show False
by blast

qed

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)
proof default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)
proof default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False

by blast
qed

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)
proof default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed

Example: Cantor’s theorem

lemma ¬ surj(f :: ’a⇒ ’a set)
proof default proof: assume surj, show False
assume a: surj f
from a have b: ∀ A. ∃ a. A = f a
by(simp add: surj_def)

from b have c: ∃ a. {x. x /∈ f x} = f a
by blast

from c show False
by blast

qed

Abbreviations

this = the previous proposition proved or assumed
then = from this
thus = then show

hence = then have

using and with

(have|show) prop using facts

=
from facts (have|show) prop

with facts
=

from facts this

using and with

(have|show) prop using facts
=

from facts (have|show) prop

with facts
=

from facts this

using and with

(have|show) prop using facts
=

from facts (have|show) prop

with facts
=

from facts this

Structured lemma statement

lemma
fixes f :: “’a⇒ ’a set”
assumes s: “surj f”
shows “False”

proof - no automatic proof step
have “∃ a. {x. x /∈ f x} = f a” using s
by(auto simp: surj_def)

thus “False” by blast
qed

Proves surj f =⇒ False
but surj f becomes local fact s in proof.

Structured lemma statement

lemma
fixes f :: “’a⇒ ’a set”
assumes s: “surj f”
shows “False”

proof -

no automatic proof step
have “∃ a. {x. x /∈ f x} = f a” using s
by(auto simp: surj_def)

thus “False” by blast
qed

Proves surj f =⇒ False
but surj f becomes local fact s in proof.

Structured lemma statement

lemma
fixes f :: “’a⇒ ’a set”
assumes s: “surj f”
shows “False”

proof - no automatic proof step

have “∃ a. {x. x /∈ f x} = f a” using s
by(auto simp: surj_def)

thus “False” by blast
qed

Proves surj f =⇒ False
but surj f becomes local fact s in proof.

Structured lemma statement

lemma
fixes f :: “’a⇒ ’a set”
assumes s: “surj f”
shows “False”

proof - no automatic proof step
have “∃ a. {x. x /∈ f x} = f a” using s
by(auto simp: surj_def)

thus “False” by blast
qed

Proves surj f =⇒ False
but surj f becomes local fact s in proof.

Structured lemma statement

lemma
fixes f :: “’a⇒ ’a set”
assumes s: “surj f”
shows “False”

proof - no automatic proof step
have “∃ a. {x. x /∈ f x} = f a” using s
by(auto simp: surj_def)

thus “False” by blast
qed

Proves surj f =⇒ False
but surj f becomes local fact s in proof.

Structured lemma statement

lemma
fixes f :: “’a⇒ ’a set”
assumes s: “surj f”
shows “False”

proof - no automatic proof step
have “∃ a. {x. x /∈ f x} = f a” using s
by(auto simp: surj_def)

thus “False” by blast
qed

Proves surj f =⇒ False

but surj f becomes local fact s in proof.

Structured lemma statement

lemma
fixes f :: “’a⇒ ’a set”
assumes s: “surj f”
shows “False”

proof - no automatic proof step
have “∃ a. {x. x /∈ f x} = f a” using s
by(auto simp: surj_def)

thus “False” by blast
qed

Proves surj f =⇒ False
but surj f becomes local fact s in proof.

The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively

Structured lemma statements

fixes x :: τ1 and y :: τ2 …
assumes a: P and b: Q …
shows R

▶ fixes and assumes sections optional
▶ shows optional if no fixes and assumes

Structured lemma statements

fixes x :: τ1 and y :: τ2 …
assumes a: P and b: Q …
shows R

▶ fixes and assumes sections optional

▶ shows optional if no fixes and assumes

Structured lemma statements

fixes x :: τ1 and y :: τ2 …
assumes a: P and b: Q …
shows R

▶ fixes and assumes sections optional
▶ shows optional if no fixes and assumes

Proof patterns: Case distinction

show “R”
proof cases
assume “P”
...
show “R” . . .

next
assume “¬ P”
...
show “R” . . .

qed

have “P ∨ Q” . . .
then show “R”
proof
assume “P”
...
show “R” . . .

next
assume “Q”
...
show “R” . . .

qed

Proof patterns: Case distinction

show “R”
proof cases
assume “P”
...
show “R” . . .

next
assume “¬ P”
...
show “R” . . .

qed

have “P ∨ Q” . . .
then show “R”
proof
assume “P”
...
show “R” . . .

next
assume “Q”
...
show “R” . . .

qed

Proof patterns: Contradiction

show “¬ P”
proof
assume “P”
...
show “False” . . .

qed

show “P”
proof (rule ccontr)
assume “¬P”
...
show “False” . . .

qed

Proof patterns: Contradiction

show “¬ P”
proof
assume “P”
...
show “False” . . .

qed

show “P”
proof (rule ccontr)
assume “¬P”
...
show “False” . . .

qed

Proof patterns: ←→

show “P ←→ Q”
proof
assume “P”
...
show “Q” . . .

next
assume “Q”
...
show “P” . . .

qed

Proof patterns: ∀ and ∃ introduction

show “∀ x. P(x)”
proof
fix x local fixed variable
show “P(x)” . . .

qed

show “∃ x. P(x)”
proof
...
show “P(witness)” . . .

qed

Proof patterns: ∀ and ∃ introduction

show “∀ x. P(x)”
proof
fix x local fixed variable
show “P(x)” . . .

qed

show “∃ x. P(x)”
proof
...
show “P(witness)” . . .

qed

Proof patterns: ∃ elimination: obtain

have ∃ x. P(x)
then obtain x where p: P(x) by blast
... x fixed local variable

Works for one or more x

Proof patterns: ∃ elimination: obtain

have ∃ x. P(x)
then obtain x where p: P(x) by blast
... x fixed local variable

Works for one or more x

Proof patterns: ∃ elimination: obtain

have ∃ x. P(x)
then obtain x where p: P(x) by blast
... x fixed local variable

Works for one or more x

obtain example

lemma ¬ surj(f :: ’a⇒ ’a set)
proof
assume surj f
hence ∃ a. {x. x /∈ f x} = f a by(auto simp: surj_def)

then obtain a where {x. x /∈ f x} = f a by blast
hence a /∈ f a←→ a ∈ f a by blast
thus False by blast

qed

obtain example

lemma ¬ surj(f :: ’a⇒ ’a set)
proof
assume surj f
hence ∃ a. {x. x /∈ f x} = f a by(auto simp: surj_def)
then obtain a where {x. x /∈ f x} = f a by blast

hence a /∈ f a←→ a ∈ f a by blast
thus False by blast

qed

obtain example

lemma ¬ surj(f :: ’a⇒ ’a set)
proof
assume surj f
hence ∃ a. {x. x /∈ f x} = f a by(auto simp: surj_def)
then obtain a where {x. x /∈ f x} = f a by blast
hence a /∈ f a←→ a ∈ f a by blast

thus False by blast
qed

obtain example

lemma ¬ surj(f :: ’a⇒ ’a set)
proof
assume surj f
hence ∃ a. {x. x /∈ f x} = f a by(auto simp: surj_def)
then obtain a where {x. x /∈ f x} = f a by blast
hence a /∈ f a←→ a ∈ f a by blast
thus False by blast

qed

Proof patterns: Set equality and subset

show “A = B”
proof
show “A ⊆ B” . . .

next
show “B ⊆ A” . . .

qed

show “A ⊆ B”
proof
fix x
assume “x ∈ A”
...
show “x ∈ B” . . .

qed

Proof patterns: Set equality and subset

show “A = B”
proof
show “A ⊆ B” . . .

next
show “B ⊆ A” . . .

qed

show “A ⊆ B”
proof
fix x
assume “x ∈ A”
...
show “x ∈ B” . . .

qed

Example: pattern matching

show formula1 ←→ formula2 (is ?L←→ ?R)

proof
assume ?L
...
show ?R …

next
assume ?R
...
show ?L …

qed

Example: pattern matching

show formula1 ←→ formula2 (is ?L←→ ?R)
proof

assume ?L
...
show ?R …

next
assume ?R
...
show ?L …

qed

?thesis

show formula

(is ?thesis)

proof -
...
show ?thesis …

qed

Every show implicitly defines ?thesis

?thesis

show formula (is ?thesis)
proof -

...
show ?thesis …

qed

Every show implicitly defines ?thesis

?thesis

show formula (is ?thesis)
proof -

...
show ?thesis …

qed

Every show implicitly defines ?thesis

let

Introducing local abbreviations in proofs:

let ?t = "some-big-term"
...
have "…?t …"

Quoting facts by value

By name:
have x0: ”x > 0” …
...
from x0 …

By value:
have ”x > 0” …
...
from ‘x>0‘ …

↑ ↑
back quotes

Quoting facts by value

By name:
have x0: ”x > 0” …
...
from x0 …

By value:
have ”x > 0” …
...
from ‘x>0‘ …

↑ ↑
back quotes

Quoting facts by value

By name:
have x0: ”x > 0” …
...
from x0 …

By value:
have ”x > 0” …
...
from ‘x>0‘ …

↑ ↑
back quotes

Example

lemma
“(∃ ys zs. xs = ys @ zs ∧ length ys = length zs) ∨
(∃ ys zs. xs = ys @ zs ∧ length ys = length zs + 1)”

proof ???

Example

lemma
“(∃ ys zs. xs = ys @ zs ∧ length ys = length zs) ∨
(∃ ys zs. xs = ys @ zs ∧ length ys = length zs + 1)”

proof ???

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …
apply - to make incoming facts

part of proof state
apply auto or whatever
apply …

At the end:
▶ done
▶ Better: convert to structured proof

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …
apply - to make incoming facts

part of proof state
apply auto or whatever
apply …

At the end:
▶ done
▶ Better: convert to structured proof

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …

apply - to make incoming facts
part of proof state

apply auto or whatever
apply …

At the end:
▶ done
▶ Better: convert to structured proof

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …
apply - to make incoming facts

part of proof state

apply auto or whatever
apply …

At the end:
▶ done
▶ Better: convert to structured proof

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …
apply - to make incoming facts

part of proof state
apply auto or whatever

apply …

At the end:
▶ done
▶ Better: convert to structured proof

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …
apply - to make incoming facts

part of proof state
apply auto or whatever
apply …

At the end:
▶ done
▶ Better: convert to structured proof

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …
apply - to make incoming facts

part of proof state
apply auto or whatever
apply …

At the end:

▶ done
▶ Better: convert to structured proof

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …
apply - to make incoming facts

part of proof state
apply auto or whatever
apply …

At the end:
▶ done

▶ Better: convert to structured proof

When automation fails

Split proof up into smaller steps.

Or explore by apply:

have … using …
apply - to make incoming facts

part of proof state
apply auto or whatever
apply …

At the end:
▶ done
▶ Better: convert to structured proof

moreover—ultimately

have “P1” . . .
moreover
have “P2” . . .
moreover
...
moreover
have “Pn” . . .
ultimately
have “P” . . .

≈

have lab1: “P1” . . .
have lab2: “P2” . . .
...
have labn: “Pn” . . .
from lab1 lab2 . . .
have “P” . . .

With names

moreover—ultimately

have “P1” . . .
moreover
have “P2” . . .
moreover
...
moreover
have “Pn” . . .
ultimately
have “P” . . .

≈

have lab1: “P1” . . .
have lab2: “P2” . . .
...
have labn: “Pn” . . .
from lab1 lab2 . . .
have “P” . . .

With names

Raw proof blocks

{ fix x1 . . . xn
assume A1 . . . Am...
have B

}

proves [[A1; . . . ; Am]] =⇒ B
where all x i have been replaced by ?xi.

Raw proof blocks

{ fix x1 . . . xn
assume A1 . . . Am...
have B

}

proves [[A1; . . . ; Am]] =⇒ B

where all x i have been replaced by ?xi.

Raw proof blocks

{ fix x1 . . . xn
assume A1 . . . Am...
have B

}

proves [[A1; . . . ; Am]] =⇒ B
where all x i have been replaced by ?xi.

Proof state and Isar text

In general: proof method
Applies method and generates subgoal(s):∧

x1 . . . xn [[A1; . . . ; Am]] =⇒ B

How to prove each subgoal:

fix x1 . . . xn
assume A1 . . . Am...
show B

Separated by next

Proof state and Isar text

In general: proof method

Applies method and generates subgoal(s):∧
x1 . . . xn [[A1; . . . ; Am]] =⇒ B

How to prove each subgoal:

fix x1 . . . xn
assume A1 . . . Am...
show B

Separated by next

Proof state and Isar text

In general: proof method
Applies method and generates subgoal(s):∧

x1 . . . xn [[A1; . . . ; Am]] =⇒ B

How to prove each subgoal:

fix x1 . . . xn
assume A1 . . . Am...
show B

Separated by next

Proof state and Isar text

In general: proof method
Applies method and generates subgoal(s):∧

x1 . . . xn [[A1; . . . ; Am]] =⇒ B

How to prove each subgoal:

fix x1 . . . xn
assume A1 . . . Am...
show B

Separated by next

Proof state and Isar text

In general: proof method
Applies method and generates subgoal(s):∧

x1 . . . xn [[A1; . . . ; Am]] =⇒ B

How to prove each subgoal:

fix x1 . . . xn
assume A1 . . . Am...
show B

Separated by next

Proof state and Isar text

In general: proof method
Applies method and generates subgoal(s):∧

x1 . . . xn [[A1; . . . ; Am]] =⇒ B

How to prove each subgoal:

fix x1 . . . xn
assume A1 . . . Am...
show B

Separated by next

Datatype case analysis

datatype t = C1 τ⃗ | …

proof (cases "term")
case (C1 x1 . . . xk)
… x j …

next
...
qed

where case (Ci x1 . . . xk) ≡
fix x1 . . . xk
assume Ci:︸︷︷︸

label

term = (Ci x1 . . . xk)︸ ︷︷ ︸
formula

Datatype case analysis

datatype t = C1 τ⃗ | …

proof (cases "term")
case (C1 x1 . . . xk)
… x j …

next
...
qed

where case (Ci x1 . . . xk) ≡
fix x1 . . . xk
assume Ci:︸︷︷︸

label

term = (Ci x1 . . . xk)︸ ︷︷ ︸
formula

Datatype case analysis

datatype t = C1 τ⃗ | …

proof (cases "term")
case (C1 x1 . . . xk)
… x j …

next
...
qed

where case (Ci x1 . . . xk) ≡
fix x1 . . . xk
assume Ci:︸︷︷︸

label

term = (Ci x1 . . . xk)︸ ︷︷ ︸
formula

Structural induction for nat

show P(n)
proof (induction n)

case 0
...
show ?case

next
case (Suc n)
......
show ?case

qed

Structural induction for nat

show P(n)
proof (induction n)

case 0 ≡ let ?case = P(0)
...
show ?case

next
case (Suc n)
......
show ?case

qed

Structural induction for nat

show P(n)
proof (induction n)

case 0 ≡ let ?case = P(0)
...
show ?case

next
case (Suc n) ≡ fix n assume Suc: P(n)
... let ?case = P(Suc n)...
show ?case

qed

Structural induction with =⇒

show A(n) =⇒ P(n)
proof (induction n)

case 0

≡ assume 0: A(0)

...

let ?case = P(0)

show ?case
next

case (Suc n)

≡ fix n

...

assume Suc: A(n) =⇒ P(n)
A(Suc n)

...

let ?case = P(Suc n)

show ?case
qed

Structural induction with =⇒

show A(n) =⇒ P(n)
proof (induction n)

case 0 ≡ assume 0: A(0)
... let ?case = P(0)
show ?case

next
case (Suc n)

≡ fix n

...

assume Suc: A(n) =⇒ P(n)
A(Suc n)

...

let ?case = P(Suc n)

show ?case
qed

Structural induction with =⇒

show A(n) =⇒ P(n)
proof (induction n)

case 0 ≡ assume 0: A(0)
... let ?case = P(0)
show ?case

next
case (Suc n) ≡ fix n
... assume Suc: A(n) =⇒ P(n)

A(Suc n)
... let ?case = P(Suc n)
show ?case

qed

Named assumptions

In a proof of
A1 =⇒ . . . =⇒ An =⇒ B

by structural induction:

In the context of
case C

we have
C.IH the induction hypotheses

C.prems the premises Ai

C C.IH + C.prems

Named assumptions

In a proof of
A1 =⇒ . . . =⇒ An =⇒ B

by structural induction:
In the context of

case C

we have
C.IH the induction hypotheses

C.prems the premises Ai

C C.IH + C.prems

Named assumptions

In a proof of
A1 =⇒ . . . =⇒ An =⇒ B

by structural induction:
In the context of

case C

we have
C.IH the induction hypotheses

C.prems the premises Ai

C C.IH + C.prems

Named assumptions

In a proof of
A1 =⇒ . . . =⇒ An =⇒ B

by structural induction:
In the context of

case C

we have
C.IH the induction hypotheses

C.prems the premises Ai

C C.IH + C.prems

Named assumptions

In a proof of
A1 =⇒ . . . =⇒ An =⇒ B

by structural induction:
In the context of

case C

we have
C.IH the induction hypotheses

C.prems the premises Ai

C C.IH + C.prems

A remark on style

▶ case (Suc n) …show ?case
is easy to write and maintain

▶ fix n assume formula …show formula′
is easier to read:

▶ all information is shown locally
▶ no contextual references (e.g. ?case)

A remark on style

▶ case (Suc n) …show ?case
is easy to write and maintain

▶ fix n assume formula …show formula′
is easier to read:

▶ all information is shown locally
▶ no contextual references (e.g. ?case)

Rule induction

inductive I :: τ ⇒ σ⇒ bool
where
rule1: . . .
...
rulen: . . .

show I x y =⇒ P x y
proof (induction rule: I.induct)

case rule1
…
show ?case

next
...
next

case rulen
…
show ?case

qed

Rule induction

inductive I :: τ ⇒ σ⇒ bool
where
rule1: . . .
...
rulen: . . .

show I x y =⇒ P x y

proof (induction rule: I.induct)
case rule1
…
show ?case

next
...
next

case rulen
…
show ?case

qed

Rule induction

inductive I :: τ ⇒ σ⇒ bool
where
rule1: . . .
...
rulen: . . .

show I x y =⇒ P x y
proof (induction rule: I.induct)

case rule1
…
show ?case

next
...
next

case rulen
…
show ?case

qed

Rule induction

inductive I :: τ ⇒ σ⇒ bool
where
rule1: . . .
...
rulen: . . .

show I x y =⇒ P x y
proof (induction rule: I.induct)

case rule1
…
show ?case

next
...
next

case rulen
…
show ?case

qed

Fixing your own variable names

case (rulei x1 . . . xk)

Renames the first k variables in rulei (from left to right) to
x1 . . . xk.

Named assumptions

In a proof of
I . . . =⇒ A1 =⇒ . . . =⇒ An =⇒ B

by rule induction on I . . . :

In the context of
case R

we have
R.IH the induction hypotheses

R.hyps the assumptions of rule R

R.prems the premises Ai

R R.IH + R.hyps + R.prems

Named assumptions

In a proof of
I . . . =⇒ A1 =⇒ . . . =⇒ An =⇒ B

by rule induction on I . . . :
In the context of

case R

we have
R.IH the induction hypotheses

R.hyps the assumptions of rule R

R.prems the premises Ai

R R.IH + R.hyps + R.prems

Named assumptions

In a proof of
I . . . =⇒ A1 =⇒ . . . =⇒ An =⇒ B

by rule induction on I . . . :
In the context of

case R

we have
R.IH the induction hypotheses

R.hyps the assumptions of rule R

R.prems the premises Ai

R R.IH + R.hyps + R.prems

Named assumptions

In a proof of
I . . . =⇒ A1 =⇒ . . . =⇒ An =⇒ B

by rule induction on I . . . :
In the context of

case R

we have
R.IH the induction hypotheses

R.hyps the assumptions of rule R

R.prems the premises Ai

R R.IH + R.hyps + R.prems

Named assumptions

In a proof of
I . . . =⇒ A1 =⇒ . . . =⇒ An =⇒ B

by rule induction on I . . . :
In the context of

case R

we have
R.IH the induction hypotheses

R.hyps the assumptions of rule R

R.prems the premises Ai

R R.IH + R.hyps + R.prems

Named assumptions

In a proof of
I . . . =⇒ A1 =⇒ . . . =⇒ An =⇒ B

by rule induction on I . . . :
In the context of

case R

we have
R.IH the induction hypotheses

R.hyps the assumptions of rule R

R.prems the premises Ai

R R.IH + R.hyps + R.prems

Rule inversion

inductive ev :: “nat ⇒ bool” where
ev0: “ev 0” |
evSS: “ev n =⇒ ev(Suc(Suc n))”

What can we deduce from ev n ?

That it was proved by either ev0 or evSS !

ev n =⇒ n = 0 ∨ (∃ k. n = Suc (Suc k) ∧ ev k)

Rule inversion = case distinction over rules

Rule inversion

inductive ev :: “nat ⇒ bool” where
ev0: “ev 0” |
evSS: “ev n =⇒ ev(Suc(Suc n))”

What can we deduce from ev n ?
That it was proved by either ev0 or evSS !

ev n =⇒ n = 0 ∨ (∃ k. n = Suc (Suc k) ∧ ev k)

Rule inversion = case distinction over rules

Rule inversion

inductive ev :: “nat ⇒ bool” where
ev0: “ev 0” |
evSS: “ev n =⇒ ev(Suc(Suc n))”

What can we deduce from ev n ?
That it was proved by either ev0 or evSS !

ev n =⇒ n = 0 ∨ (∃ k. n = Suc (Suc k) ∧ ev k)

Rule inversion = case distinction over rules

Rule inversion

inductive ev :: “nat ⇒ bool” where
ev0: “ev 0” |
evSS: “ev n =⇒ ev(Suc(Suc n))”

What can we deduce from ev n ?
That it was proved by either ev0 or evSS !

ev n =⇒ n = 0 ∨ (∃ k. n = Suc (Suc k) ∧ ev k)

Rule inversion = case distinction over rules

Rule inversion template

from ‘ev n‘ have “P”
proof cases
case ev0 n = 0
...

show ?thesis . . .
next
case (evSS k) n = Suc (Suc k), ev k
...

show ?thesis . . .
qed

Impossible cases disappear automatically

Rule inversion template

from ‘ev n‘ have “P”
proof cases
case ev0 n = 0
...

show ?thesis . . .
next
case (evSS k) n = Suc (Suc k), ev k
...

show ?thesis . . .
qed

Impossible cases disappear automatically

Summary

▶ Introduction to Isar and to some common proof patterns e.g.
case distinction, contradiction, etc.

▶ Structured proofs are becoming the norm for Isabelle as they
are more readable and easier to maintain.

▶ Mastering structured proof takes practice and it is usually
better to have a clear proof plan beforehand.

▶ Useful resource: Isar quick reference manual (see AR web
page).

▶ Reading: N&K (Concrete Semantics), Chapter 5.

	Isar by example
	Proof patterns
	Streamlining Proofs
	Pattern Matching and Quotations
	Top down proof development
	moreover
	Raw proof blocks

	Proof by Cases and Induction
	Rule Induction
	Rule Inversion

