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As we saw already, definitional extension is favoured over
axiomatic extension in Isabelle/HOL.

» Axiomatization can introduce an inconsistency.

» Example: After declaring the existence of a new type SET in
Isabelle, it is possible to add a new axiom:

axiomatization
Member :: SET = SET = bool
where

comprehension : 3y.Vx. Member x y <— P x
which enables a "proof" of the paradoxical lemma:
lemma member_iff_not_member : 3y. Member y y <— —Member y y

from which False can be derived.

> Yet, axiomatic reasoning is part of mathematics. We want to be
able to carry it out safely in Isabelle.
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Local axiomatic reasoning in Isabelle/HOL

Fortunately, we can reason from axioms locally in a sound way. For
example, to prove results about groups, rings or vector spaces.

We later instantiate the axioms with actual groups, rings, vector
spaces.

Isabelle provides a facility for doing this called locales.

locale group =
fixesmult :: ‘a='a="'a and unit:’a
assumes left_unit : mult unit x = x
and associativity : mult x (mult y z) = mult (mult x y) z
and left_inverse : Jy. mult y x = unit
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Locales usually have

» parameters, declared using fixes
» assumptions, declared using assumes
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Inside a locale, definitions can be made and theorems proven
based on the parameters and assumptions.
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A locale can import/extend other locales.



Locale Example: Finite Graphs

locale finitegraph =
fixesedges :: (‘ax’a)set and vertices :: 'aset
assumes finite_vertex_set : finite vertices

and is_graph : (u,v) € edges = u € vertices A v € vertices
begin
inductive walk :: 'alist = bool where
Nil : walk ||
|Singleton : v € vertices = walk [v]
| Cons ¢ (v,w) € edges = walk(wi#vs) = walk (v#w#vs)

lemma walk_edge : (v,w) € edges = walk [v, w]

end

> # is the list cons operator in Isabelle.
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locale finitegraph =
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assumes finite_vertex_set : finite vertices

and is_graph : (u,v) € edges = u € vertices A v € vertices
begin
inductive walk :: 'alist = bool where
Nil : walk ||
|Singleton : v € vertices = walk [v]
| Cons ¢ (v,w) € edges = walk(wi#vs) = walk (v#w#vs)

lemma walk_edge : (v,w) € edges = walk [v, w]

end

> # is the list cons operator in Isabelle.
> The definition of this locale can be inspected by typing
thm finitegraph_def in Isabelle:
finitegraph ?edges 7 vertices =
finite 7 vertices N\
(Yuv.(u, v) € Tedges — u € Tvertices \ v € 7vertices)
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Aside from proving a lemma within the locale definition, e.g.
walk_edge on the previous slide, we can also state lemmas that are
"in" some locale:

lemma (in group) associativity _bw :
"mult (mult x y) z = mult x (mult y z)"
apply (subst associativity)

apply (rule refl)
done

Alternatively, we can enter a locale at the theory level using the
context keyword and formalize new definitions and theorems:

context group
begin
lemma associativity_bw :
"mult (mult x y) z = mult x (mult y z)"
apply (subst associativity)
apply (rule refl)
done

end
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Locale Extension

> New locales can extend existing ones by adding more
parameter, assumptions and definitions. This is also known as
an import.

» The context of the imported locale i.e. all its assumptions,
theorems etc. are available in the extended locale.

locale weighted_finitegraph = finitegraph +
fixes weight :: (‘a X 'a) = nat
assumes edges_weighted : Ve € edges.Jw. weighte = w

Viewed in terms of the imported finitegraph locale (and the weighted
edges axiom), we have:

weighted_finitegraph ?edges ?vertices ?weight =
finitegraph 7edges ?vertices A (Ve € 7edges. Iw. Tweight e = w)
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Instantiating Locales

> Concrete examples may be proven to be instances of a locale.

> interpretation interpretation_name : locale_name args
generates the proof obligation that the locale predicate holds of
the args.

» Example: A graph with one vertex and single edge from that
vertex to itself is a concrete instance of the locale finite_graph.
interpretation singleton_finitegraph : finitegraph "{(1,1)}" "{1}"
proof

show "finite {1}" by simp

next fixuv

assume "(u,v) € {(1,1)}" then show "u € {1} AveE {1}" by blast
qed

> We can prove that singleton_finitegraph is an instance of a finite
weighted graph locale by providing a weight function as an
additional argument:

interpretation
singleton_finitegraph : weighted_finitegraph "{(1,1)}" "{1}" "A(u, v). 1"
by (unfold_locales) simp



Summary

» Axiomatization at the Isabelle theory level (i.e. as an extension
of Isabelle/HOL) is not favoured as it can be unsound (see the
additional exercise on the AR web page).

» Locales provide a sound way of reasoning locally about
axiomatic theories.

» This was an introduction to locale declarations, extensions and
interpretations.
» There are many other features involving representation and
reasoning using locales in Isabelle.
» Reading: Tutorial to Locales and Locale Interpretation (on the
AR web page).



