Automated Reasoning

Lecture 6: Representation

Jacques Fleuriot jdf@inf.ed.ac.uk

Recap

- Last time: First-Order Logic
- ► This time: Representing mathematical concepts

Representing Knowledge

So far, we have:

- Seen the primitive rules of (first-order) logic
- ▶ Reasoned about abstract *P*s, *Q*s, and *R*s

But we usually want to reason in some mathematical theory. For example: number theory, real analysis, automata theory, euclidean geometry, ...

How do we represent this theory so we can prove theorems about it?

- ► Which logic do we use? Propositional, FOL, Temporal, Hoare Logic, HOL?
- Do we axiomatise our theory, or define it in terms of more primitive concepts?
- What style do we use? *e.g.* **functions** vs. **relations**

Further Issues

What are the important theorems in our theory?

- Which formalisation is most useful?
- Is it easy to understand?
- ► Is it natural?
- How easy is it to **reason** with?

Often a matter of taste, or experience, or tradition, or efficiency of implementation, or following the idioms of the people you are working with. No single right way!

Granularity of the representation

- What primitives do we need? Consider geometry:
 - Define lines in terms of points? (Tarksi)
 - Or take points and lines as primitive? (Hilbert)
- Or computing; should we treat programs as:
 - State transition systems? (operational)
 - ▶ Functions mapping inputs to outputs? (~ denotational)

Axioms vs. Definitions

Let's say we want to reason using the natural numbers $\{0, 1, 2, 3, ...\}$

Axiomatise? Assume a collection of function symbols and *unproven axioms*. For instance, the Peano axioms:

$$\forall x. \ \neg (0 = S(x)) \\ \forall x. \ x + 0 = x \\ \forall x. \ x + S(y) = S(x + y) \\ \cdots$$

Define? If our logic has sets as a primitive (or are definable), then we can *define* the natural numbers via the von Neumann ordinals:

$$0=\emptyset,1=\{\emptyset\},2=\{\emptyset,\{\emptyset\}\},\ldots$$

Then we can prove the Peano axioms for this definition.

Axioms vs. Definitions

Axiomatisation:

- (+) Sometimes less work finding a good definition, and (formally) working with it can be hard.
- (-) How do we know that our axiomatisation is adequate for our purposes, or is complete?
- ► (-) How do we know that our axiomatisation is consistent? Can we prove ⊥ from our axioms (and hence everything)?

Definition:

- ► (-) Can be a lot of work, sometimes needing some ingenuity.
- (+++) If the underlying logic is consistent, then we are guaranteed to be consistent (c.f., "Why should you believe Isabelle" from Lecture 4). We have relative consistency.

Axiomatisation, an example: Set Theory

Let's take FOL, a binary atomic predicate \in and the following axiom for every formula *P* with one free variable *x*:

 $\exists y. \forall x. x \in y \leftrightarrow P(x)$

"For every predicate P there is a set y such that its members are exactly those that satisfy P"

We can now define empty set, pairing, union, intersection...

Axiomatisation, an example: Set Theory

Let's take FOL, a binary atomic predicate \in and the following axiom for every formula *P* with one free variable *x*:

 $\exists y. \forall x. x \in y \leftrightarrow P(x)$

"For every predicate P there is a set y such that its members are exactly those that satisfy P"

We can now define empty set, pairing, union, intersection...

But it is **too powerful!** Let $P(x) \equiv \neg(x \in x)$. Then by the axiom there is a *y* such that:

$$y \in y \leftrightarrow y \not\in y$$

This is Russell's paradox.

Axiomatisation, an example: Set Theory

Let's take FOL, a binary atomic predicate \in and the following axiom for every formula *P* with one free variable *x*:

 $\exists y. \forall x. x \in y \leftrightarrow P(x)$

"For every predicate P there is a set y such that its members are exactly those that satisfy P"

We can now define empty set, pairing, union, intersection...

But it is **too powerful!** Let $P(x) \equiv \neg(x \in x)$. Then by the axiom there is a *y* such that:

 $y \in y \leftrightarrow y \not\in y$

This is **Russell's paradox**.

Background: the axiom is called "unrestricted comprehension", it was replaced by:

$$\forall z. \exists y. \forall x. (x \in y \leftrightarrow (x \in z \land P(x)))$$

+ some other axioms to give ZF set theory.

Building up Definitions: Integers

Starting from the natural numbers $\mathbb{N}=\{0,1,2,\ldots\},$ we can define:

- each integer Z = {..., -2, -1, 0, 1, 2, ...} as an equivalence class of pairs of natural numbers under the relation

 (a, b) ~ (c, d) ⇐⇒ a + d = b + c;
- ▶ For example, -2 is represented by the equivalence class [(0,2)] = [(1,3)] = [(100,102)] = ...
- we define the sum and product of two integers as

$$\begin{split} [(a, b)] + [(c, d)] &= [(a + c, b + d)] \\ [(a, b)] \times [(c, d)] &= [(ac + bd, ad + bc)]; \end{split}$$

- ▶ we define the set of negative integers as the set {[(a, b)] | b > a}.
- Exercise: show that the product of negative integers is non-negative.

Other Representation Examples

- ► The rationals Q can be defined as pairs of integers. Reasoning about the rationals therefore reduces to reasoning about the integers.
- ► The reals ℝ can be defined as sets of rationals. Reasoning about the reals therefore reduces to reasoning about the rationals.
- ► The complex numbers C can be defined as pairs of reals. Reasoning about the complex numbers therefore reduces to reasoning about the reals.
- ► In this way, we have **relative consistency**.
 - ► If the theory of natural numbers is consistent, so is the theory of complex numbers.

Functions or Predicates?

We can represent some property r holding between two objects x and y as:

a function with equality r(x) = ya predicate r(x, y)

Is it better to use functions or predicates to represent properties?

It is not always clear which is best!

Functional Representation

For example, suppose we represent division of real numbers (/) by a function $div : real \times real \Rightarrow real$.

- We define div(x, y) when $y \neq 0$ in normal way
- What about division-by-zero? What is the value of div(x, 0)?
- In first-order logic, functions are assumed to be total, so we have to pick a value!
- We could *choose* a convenient element: say 0. That way:

$$0 \le x \to 0 \le 1/x.$$

Predicate Representation

Q) Can we represent division of real numbers (/) by a relation $Div : real \times real \times real \Rightarrow bool$ such that Div(x, y, z) is

•
$$x/y = z$$
 when $y \neq 0$, and

• \perp when y = 0?

A) Yes: $Div(x, y, z) \equiv x = y * z \land \forall w. \ x = y * w \rightarrow z = w$ That is, *z* is that *unique* value such that x = y * z.

But now formulas are more complicated.

$$x, y \neq 0 \rightarrow \frac{1}{\left(\left(x/y \right)/x \right)} = y$$

becomes

$$\mathit{Div}(x, y, u) \land \mathit{Div}(u, x, v) \land \mathit{Div}(1, v, w) \land x, y \neq 0 \rightarrow w = y$$

Functional Representation

Can we represent the concept of *square roots* with a function $\sqrt{:real} \Rightarrow real$?

- All positive real numbers have *two* square roots, and yet a function maps points to *single* values.
- We can pick one of the values arbitrarily: say, the *positive (principal)* square root.
- Or we can have the function map every real to a set $\sqrt{: real \Rightarrow real set}$:

$$\sqrt{x} \equiv \left\{ y \mid x = y^2 \right\}.$$

But now we have two kinds of object: reals and sets of reals, and we cannot conveniently express:

$$(\sqrt{x})^2 = x$$

• Our representation of reals is no longer **self-contained**.

Predicate Representation

Q) Can we represent the concept of *square roots* with a relation *Sqrt* : *real* \times *real* \Rightarrow *bool*?

A) Yes. E.g.
$$Sqrt(x, y) \equiv x = y^2$$
.

Again drawback of formulas being more complicated

Functions, Predicates and Sets

We can translate back and forth. But too much translation makes a formalisation hard to use!

Any function $f: \alpha \to \beta$ can be represented as a relation $R: \alpha \times \beta \to bool$ or a set $S: (\alpha \times \beta)$ set by defining:

$$R(x, y) \equiv f(x) = y$$

$$S \equiv \{(x, y) \mid f(x) = y\}.$$

Any predicate *P* can be represented by a function *f* or a set *S* by defining:

$$f(x) \equiv \begin{cases} True : P(x) \\ False : otherwise \\ S \equiv \{x \mid P(x)\}. \end{cases}$$

Any set *S* can be represented by a function *f* or a predicate *P* by defining:

$$f(x) \equiv \begin{cases} True : x \in S \\ False : otherwise \end{cases}$$
$$P(x) \equiv x \in S$$

Set Theory, Functions, and HOL

In **pure** (without axioms) **FOL**, we **cannot directly represent** the statement:

there is a function that is larger on all arguments than the log function.

To formalise it, we would need to quantify over functions:

 $\exists f. \ \forall x. \ f(x) > \log x.$

Likewise we cannot quantify over predicates.

Solutions in FOL:

- Represent all functions and predicates by sets, and quantify over these. This is the approach of first-order set theories such as ZF.
- Introduce sorts for predicates and functions. Not so elegant now having 2 kinds of each.

Summary

This time:

- Issues involved in representing mathematical theories
- Axioms vs. Definitions
- Functions vs. Predicates
- Introduction to Higher-Order Logic
- Reading: Bundy, Chapter 4 (contains further discussion of issues in representation, e.g. variadic functions).
- On the course web-page: some more exercises, asking you to "prove" False from the axioms of Naive Set Theory.