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Recap

> Last time: First-Order Logic

> This time: Representing mathematical concepts



Representing Knowledge

So far, we have:
> Seen the primitive rules of (first-order) logic

» Reasoned about abstract Ps, Qs, and Rs

But we usually want to reason in some mathematical theory. For
example: number theory, real analysis, automata theory, euclidean
geometry, ...

How do we represent this theory so we can prove theorems about it?

» Which logic do we use? — Propositional, FOL, Temporal,
Hoare Logic, HOL?

» Do we axiomatise our theory, or define it in terms of more
primitive concepts?

» What style do we use? e.g. functions vs. relations



Further Issues
What are the important theorems in our theory?
» Which formalisation is most useful?
> Is it easy to understand?
» Is it natural?
» How easy is it to reason with?

Often a matter of taste, or experience, or tradition, or efficiency of
implementation, or following the idioms of the people you are
working with. No single right way!

Granularity of the representation
» What primitives do we need? Consider geometry:
» Define lines in terms of points? (Tarksi)
» Or take points and lines as primitive? (Hilbert)
» Or computing; should we treat programs as:

» State transition systems? (operational)
» Functions mapping inputs to outputs? (~ denotational)



Axioms vs. Definitions

Let’s say we want to reason using the natural numbers {0, 1,2, 3, ...}

Axiomatise? Assume a collection of function symbols and unproven
axioms. For instance, the Peano axioms:

Vx. =(0 = S(x))
Vx.x+0=x
Vx. x+ S(y) = S(x+ )

Define? If our logic has sets as a primitive (or are definable), then we
can define the natural numbers via the von Neumann ordinals:

0=0,1={0},2={0,{0}},..

Then we can prove the Peano axioms for this definition.



Axioms vs. Definitions

Axiomatisation:
> (+) Sometimes less work - finding a good definition, and
(formally) working with it can be hard.
> (-) How do we know that our axiomatisation is adequate for our
purposes, or is complete?

» (-) How do we know that our axiomatisation is consistent? Can
we prove L from our axioms (and hence everything)?

Definition:
> (-) Can be a lot of work, sometimes needing some ingenuity.
> (+++) If the underlying logic is consistent, then we are

guaranteed to be consistent (c.f., “Why should you believe
Isabelle” from Lecture 4). We have relative consistency.



Axiomatisation, an example: Set Theory

Let’s take FOL, a binary atomic predicate € and the following axiom
for every formula P with one free variable x:

Jdy. ¥x. x € y <> P(x)

“For every predicate P there is a set y such that its members are exactly
those that satisfy P”

We can now define empty set, pairing, union, intersection...
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those that satisfy P”
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But it is too powerful! Let P(x) = —(x € x). Then by the axiom
there is a y such that:
yey<ygy

This is Russell’s paradox.



Axiomatisation, an example: Set Theory

Let’s take FOL, a binary atomic predicate € and the following axiom
for every formula P with one free variable x:

Jdy. ¥x. x € y <> P(x)
“For every predicate P there is a set y such that its members are exactly

those that satisfy P”

We can now define empty set, pairing, union, intersection...

But it is too powerful! Let P(x) = —(x € x). Then by the axiom
there is a y such that:

yey<ygy
This is Russell’s paradox.

Background: the axiom is called "unrestricted comprehension”, it was
replaced by:
Vz. dy. Vx. (x € y <> (x € zA P(x)))

+ some other axioms to give ZF set theory.



Building up Definitions: Integers

Starting from the natural numbers N = {0, 1,2, ...}, we can define:

>

each integer Z = {...,—2,—1,0,1,2,...} as an equivalence
class of pairs of natural numbers under the relation

(a,b) ~ (¢,d) <= a+d=b+¢

For example, —2 is represented by the equivalence class
[(0,2)] =[(1,3)] = [(100,102)] = ....

we define the sum and product of two integers as

[(a, )] + [(c, d)]

[(a, )] x [(c, d)]
we define the set of negative integers as the set
{[(a,0)] | b> a}.

Exercise: show that the product of negative integers is
non-negative.

[(a+c, b+ d)]
[(ac + bd, ad + bc)] ;



Other Representation Examples

> The rationals Q can be defined as pairs of integers. Reasoning
about the rationals therefore reduces to reasoning about the
integers.

> The reals R can be defined as sets of rationals. Reasoning about
the reals therefore reduces to reasoning about the rationals.

» The complex numbers C can be defined as pairs of reals.
Reasoning about the complex numbers therefore reduces to
reasoning about the reals.

> In this way, we have relative consistency.

» If the theory of natural numbers is consistent, so is the theory of
complex numbers.



Functions or Predicates?

We can represent some property r holding between two objects x
and y as:

a function with equality r(x) =y
a predicate r(x, )

Is it better to use functions or predicates to represent properties?

It is not always clear which is best!



Functional Representation

For example, suppose we represent division of real numbers (/) by a
function div : real X real = real.

» We define div(x, y) when y # 0 in normal way
» What about division-by-zero? What is the value of div(x, 0)?

> In first-order logic, functions are assumed to be total, so we
have to pick a value!

» We could choose a convenient element: say 0. That way:

0<x—0<1/x



Predicate Representation

Q) Can we represent division of real numbers (/) by a relation
Div : real x real x real = bool such that Div(x, y, z) is

» x/y = zwhen y# 0, and
» | when y=0?
A) Yes: Div(x,y,z) = x=y*xzAVw.x=y*w—>z=w

That is, z is that unique value such that x = y * z.

But now formulas are more complicated.

1

SYEO2 oy Y

becomes

Div(x, y, u) A Div(u, x, v) A Div(1, v, w) Ax,y#0 — w=y



Functional Representation

Can we represent the concept of square roots with a function
\/ ¢ real = real?

>

All positive real numbers have two square roots, and yet a function
maps points to single values.

We can pick one of the values arbitrarily: say, the positive (principal)
square root.

Or we can have the function map every real to a set

Ve real = real set:
VE={ylx=y}.

But now we have two kinds of object: reals and sets of reals, and we
cannot conveniently express:

(V3 =

Our representation of reals is no longer self-contained.



Predicate Representation

Q) Can we represent the concept of square roots with a relation
Sqrt : real x real = bool?

A) Yes. E.g. Sqrt(x, y) = x = y.

Again drawback of formulas being more complicated



Functions, Predicates and Sets

We can translate back and forth. But too much translation makes a
formalisation hard to use!

Any function f: o — [ can be represented as a relation R : o X 5 — bool
orasetS: (a x [3)set by defining:

R(x,y) = fix) =y
S={(xy) | flx) =y}

Any predicate P can be represented by a function for a set S by defining:

_ | True : P(x)
fx) :{ False : otherwise

S={x|P(x)}.
Any set S can be represented by a function for a predicate P by defining:

flx) = True : x€8
| False : otherwise

Px)=x€eS



Set Theory, Functions, and HOL

In pure (without axioms) FOL, we cannot directly represent the
statement:

there is a function that is larger on all arguments than the
log function.

To formalise it, we would need to quantify over functions:
3f. Vx. flx) > log x.
Likewise we cannot quantify over predicates.

Solutions in FOL:

> Represent all functions and predicates by sets, and quantify
over these. This is the approach of first-order set theories such
as ZF.

» Introduce sorts for predicates and functions. Not so elegant
now having 2 kinds of each.



Summary

» This time:
» Issues involved in representing mathematical theories
Axioms vs. Definitions
Functions vs. Predicates
Introduction to Higher-Order Logic
Reading: Bundy, Chapter 4 (contains further discussion of issues
in representation, e.g. variadic functions).
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» On the course web-page: some more exercises, asking you to
“prove” False from the axioms of Naive Set Theory.



