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Recap

▶ Last time: First-Order Logic
▶ This time: Representing mathematical concepts



Representing Knowledge

So far, we have:
▶ Seen the primitive rules of (first-order) logic
▶ Reasoned about abstract Ps, Qs, and Rs

But we usually want to reason in some mathematical theory. For
example: number theory, real analysis, automata theory, euclidean
geometry, …

How do we represent this theory so we can prove theorems about it?
▶ Which logic do we use? — Propositional, FOL, Temporal,

Hoare Logic, HOL?
▶ Do we axiomatise our theory, or define it in terms of more

primitive concepts?
▶ What style do we use? e.g. functions vs. relations



Further Issues
What are the important theorems in our theory?

▶ Which formalisation is most useful?
▶ Is it easy to understand?
▶ Is it natural?
▶ How easy is it to reason with?

Often a matter of taste, or experience, or tradition, or efficiency of
implementation, or following the idioms of the people you are
working with. No single right way!

Granularity of the representation
▶ What primitives do we need? Consider geometry:

▶ Define lines in terms of points? (Tarksi)
▶ Or take points and lines as primitive? (Hilbert)

▶ Or computing; should we treat programs as:
▶ State transition systems? (operational)
▶ Functions mapping inputs to outputs? (∼ denotational)



Axioms vs. Definitions

Let’s say we want to reason using the natural numbers {0, 1, 2, 3, ...}

Axiomatise? Assume a collection of function symbols and unproven
axioms. For instance, the Peano axioms:

∀x. ¬(0 = S(x))
∀x. x+ 0 = x
∀x. x+ S(y) = S(x+ y)
. . .

Define? If our logic has sets as a primitive (or are definable), then we
can define the natural numbers via the von Neumann ordinals:

0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, ...

Then we can prove the Peano axioms for this definition.



Axioms vs. Definitions

Axiomatisation:
▶ (+) Sometimes less work – finding a good definition, and

(formally) working with it can be hard.
▶ (-) How do we know that our axiomatisation is adequate for our

purposes, or is complete?
▶ (-) How do we know that our axiomatisation is consistent? Can

we prove ⊥ from our axioms (and hence everything)?

Definition:
▶ (-) Can be a lot of work, sometimes needing some ingenuity.
▶ (+++) If the underlying logic is consistent, then we are

guaranteed to be consistent (c.f., “Why should you believe
Isabelle” from Lecture 4). We have relative consistency.



Axiomatisation, an example: Set Theory
Let’s take FOL, a binary atomic predicate ∈ and the following axiom
for every formula P with one free variable x:

∃y. ∀x. x ∈ y ↔ P(x)

“For every predicate P there is a set y such that its members are exactly
those that satisfy P”

We can now define empty set, pairing, union, intersection…

But it is too powerful! Let P(x) ≡ ¬(x ∈ x). Then by the axiom
there is a y such that:

y ∈ y ↔ y ̸∈ y

This is Russell’s paradox.
Background: the axiom is called ”unrestricted comprehension”, it was
replaced by:

∀z. ∃y. ∀x. (x ∈ y ↔ (x ∈ z ∧ P(x)))

+ some other axioms to give ZF set theory.
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Building up Definitions: Integers

Starting from the natural numbers N = {0, 1, 2, . . .}, we can define:
▶ each integer Z = {. . . ,−2,−1, 0, 1, 2, . . .} as an equivalence

class of pairs of natural numbers under the relation
(a, b) ∼ (c, d) ⇐⇒ a+ d = b+ c;

▶ For example, −2 is represented by the equivalence class
[(0, 2)] = [(1, 3)] = [(100, 102)] = . . ..

▶ we define the sum and product of two integers as

[(a, b)] + [(c, d)] = [(a+ c, b+ d)]

[(a, b)]× [(c, d)] = [(ac+ bd, ad+ bc)] ;

▶ we define the set of negative integers as the set
{[(a, b)] | b > a} .

▶ Exercise: show that the product of negative integers is
non-negative.



Other Representation Examples

▶ The rationals Q can be defined as pairs of integers. Reasoning
about the rationals therefore reduces to reasoning about the
integers.

▶ The reals R can be defined as sets of rationals. Reasoning about
the reals therefore reduces to reasoning about the rationals.

▶ The complex numbers C can be defined as pairs of reals.
Reasoning about the complex numbers therefore reduces to
reasoning about the reals.

▶ In this way, we have relative consistency.
▶ If the theory of natural numbers is consistent, so is the theory of

complex numbers.



Functions or Predicates?

We can represent some property r holding between two objects x
and y as:

a function with equality r(x) = y
a predicate r(x, y)

Is it better to use functions or predicates to represent properties?

It is not always clear which is best!



Functional Representation

For example, suppose we represent division of real numbers (/) by a
function div : real× real ⇒ real.

▶ We define div(x, y) when y ̸= 0 in normal way
▶ What about division-by-zero? What is the value of div(x, 0)?
▶ In first-order logic, functions are assumed to be total, so we

have to pick a value!
▶ We could choose a convenient element: say 0. That way:

0 ≤ x → 0 ≤ 1/x.



Predicate Representation

Q) Can we represent division of real numbers (/) by a relation
Div : real× real× real ⇒ bool such that Div(x, y, z) is

▶ x/y = z when y ̸= 0, and
▶ ⊥ when y = 0?

A) Yes: Div(x, y, z) ≡ x = y ∗ z ∧ ∀w. x = y ∗ w → z = w
That is, z is that unique value such that x = y ∗ z.

But now formulas are more complicated.

x, y ̸= 0 → 1

((x/y) /x)
= y

becomes

Div(x, y, u) ∧ Div(u, x, v) ∧ Div(1, v,w) ∧ x, y ̸= 0 → w = y



Functional Representation

Can we represent the concept of square roots with a function
√

: real ⇒ real?
▶ All positive real numbers have two square roots, and yet a function

maps points to single values.
▶ We can pick one of the values arbitrarily: say, the positive (principal)

square root.
▶ Or we can have the function map every real to a set

√
: real ⇒ real set: √

x ≡
{
y | x = y2

}
.

▶ But now we have two kinds of object: reals and sets of reals, and we
cannot conveniently express:

(
√
x)2 = x

▶ Our representation of reals is no longer self-contained.



Predicate Representation

Q) Can we represent the concept of square roots with a relation
Sqrt : real× real ⇒ bool?

A) Yes. E.g. Sqrt(x, y) ≡ x = y2.

Again drawback of formulas being more complicated



Functions, Predicates and Sets
We can translate back and forth. But too much translation makes a
formalisation hard to use!

Any function f : α → β can be represented as a relation R : α× β → bool
or a set S : (α× β)set by defining:

R(x, y) ≡ f(x) = y
S ≡ {(x, y) | f(x) = y}.

Any predicate P can be represented by a function f or a set S by defining:

f(x) ≡
{

True : P(x)
False : otherwise

S ≡ {x | P(x)}.

Any set S can be represented by a function f or a predicate P by defining:

f(x) ≡
{

True : x ∈ S
False : otherwise

P(x) ≡ x ∈ S



Set Theory, Functions, and HOL
In pure (without axioms) FOL, we cannot directly represent the
statement:

there is a function that is larger on all arguments than the
log function.

To formalise it, we would need to quantify over functions:

∃f. ∀x. f(x) > log x.

Likewise we cannot quantify over predicates.

Solutions in FOL:
▶ Represent all functions and predicates by sets, and quantify

over these. This is the approach of first-order set theories such
as ZF.

▶ Introduce sorts for predicates and functions. Not so elegant
now having 2 kinds of each.



Summary

▶ This time:
▶ Issues involved in representing mathematical theories
▶ Axioms vs. Definitions
▶ Functions vs. Predicates
▶ Introduction to Higher-Order Logic
▶ Reading: Bundy, Chapter 4 (contains further discussion of issues

in representation, e.g. variadic functions).

▶ On the course web-page: some more exercises, asking you to
“prove” False from the axioms of Naive Set Theory.


