Automated Reasoning

Lecture 3: Natural Deduction and Starting with Isabelle

Jacques Fleuriot jdf@inf.ed.ac.uk

Recap

- ▶ Last time I introduced natural deduction
- ▶ We saw the rules for \land and \lor :

$$\frac{P \quad Q}{P \land Q} \text{ (conjI)} \qquad \frac{P}{P \lor Q} \text{ (disjI1)} \qquad \frac{Q}{P \lor Q} \text{ (disjI2)}$$

$$\frac{P \land Q}{P} \text{ (conjunct1)} \qquad \frac{P \land Q}{Q} \text{ (conjunct2)}$$

$$[P] \qquad [Q]$$

$$\vdots \qquad \vdots$$

$$\frac{P \lor Q}{P} \qquad \frac{R}{P} \qquad R \qquad R \text{ (disjE)}$$

But what about the other connectives \rightarrow , \leftrightarrow and \neg ?

Rules for Implication

$$\begin{array}{c}
[P] \\
\vdots \\
Q \\
P \to Q
\end{array} \text{ (impI)}$$

IMPI forward: If on the assumption that
$$P$$
 is true, Q can be shown to hold, then we can conclude $P \to Q$.

$$\frac{P \to Q}{Q} \quad P \quad (mp)$$

IMPI backward: To prove $P \rightarrow Q$, assume P is true and prove that Q follows.

The **modus ponens** rule.

Another possible implication rule is this one. Note: this is not necessarily a standard ND rule but may be useful in mechanized proofs.

Rules for \leftrightarrow

$$\begin{array}{ccc}
[Q] & [P] \\
\vdots & \vdots \\
P & Q \\
\hline
P \leftrightarrow Q & P
\end{array}$$
 (iffI)
$$\frac{P \leftrightarrow Q & P}{Q} \text{ (iffD1)}$$

$$\frac{P \leftrightarrow Q}{P} \quad Q \text{ (iffD2)}$$

These rules are derivable from the rules for \wedge and \rightarrow , using the abbreviation $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$.

Note: In Isabelle, the \leftrightarrow is also denoted by =

Rules for False and Negation

It is convenient to introduce a 0-ary connective \bot to represent false. The connective \bot has the rules:

no introduction rule for
$$\perp$$
 $\frac{\perp}{P}$ (FalseE)

Note \perp is written False in Isabelle.

$$P$$

$$\vdots$$

$$\frac{\bot}{\neg P} \text{ (notI)} \qquad \frac{P \quad \neg P}{\mid} \text{ (notE)}$$

Note: we could *define* $\neg P$ to be $P \rightarrow \bot$

Note: In Isabelle, notE is different:

$$\frac{P - P}{R}$$
 (not E

In this course, you can use either version in your proofs.

Proof

Recall the logic problems from lecture 2: we can now prove

$$((Sunny \lor Rainy) \land \neg Sunny) \rightarrow Rainy$$

which we previously knew only by semantic means.

$$\frac{\frac{[(S\vee R)\wedge\neg S]_1}{S\vee R} \qquad \frac{[S]_2}{R} \qquad \frac{[R]_2}{R}}{\frac{R}{((S\vee R)\wedge\neg S)\to R}} \qquad \frac{[R]_2}{R} \qquad (\text{disjE}_2)$$

The subscripts $[\cdot]_1$ and $[\cdot]_2$ on the assumptions refer to the rule instances (also with subscripts) where they are discharged. This makes the proof easier to follow.

Note: For a full proof, the names of *all* the ND rules being used should be given (i.e. not just impI and disjE as in the above).

Soundness and Completeness

Theorem (Soundness)

If Q is provable from assumptions P_1, \ldots, P_n , then $P_1, \ldots, P_n \models Q$. This follows because all our rules are valid.

Is the converse true?

Can't prove Pierce's law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Can prove it using the *law of excluded middle*: $P \vee \neg P$.

So far, our proof system is sound and complete for Intuitionistic Logic. Intuitionistic logic rejects the law of excluded middle.

Rules for classical reasoning

Either one suffices.

Theorem (Completeness)

If $P_1, \ldots, P_n \models Q$, then Q is provable from the assumptions P_1, \ldots, P_n . Proof: more complicated, see H&R 1.4.4.

Sequents

We have been representing proofs with assumptions like so:

	P_2		
P_1	÷		P_n
÷	:		:
	Ç)	

Another notation is sequent-style or Fitch-style:

$$P_1, P_2, \ldots, P_n \vdash Q$$

The assumptions are usually collectively referred to using Γ :

$$\Gamma \vdash Q$$

This style is fiddlier on paper, but easier to prove meta-theoretic properties for, and easier to represent on a computer.

Natural Deduction Sequents

New rule:
$$\frac{P \in \Gamma}{\Gamma \vdash P}$$
 (assumption)

$$\frac{\Gamma \vdash P \qquad \Gamma \vdash Q}{\Gamma \vdash P \land Q} \text{ (conjII)} \qquad \frac{\Gamma \vdash P \land Q}{\Gamma \vdash P} \text{ (conjunct1)} \qquad \frac{\Gamma \vdash P \land Q}{\Gamma \vdash Q} \text{ (conjunct2)}$$

$$\frac{\Gamma \vdash P}{\Gamma \vdash P \lor Q} \text{ (disjI1)} \qquad \frac{\Gamma \vdash Q}{\Gamma \vdash P \lor Q} \text{ (disjI2)} \qquad \frac{\Gamma \vdash P \lor Q}{\Gamma \vdash P \lor Q} \text{ (fisjE)}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \text{ (impI)} \qquad \frac{\Gamma \vdash A \to B}{\Gamma \vdash B} \text{ (mp)}$$

$$\frac{\Gamma \vdash A \to B}{\Gamma \vdash B} \text{ (mp)}$$
No introduction rule for \bot

$$\frac{\Gamma, P \vdash \bot}{\Gamma \vdash P} \text{ (falseE)}$$

$$\frac{\Gamma, P \vdash \bot}{\Gamma \vdash P} \text{ (notI)} \qquad \frac{\Gamma \vdash P}{\Gamma \vdash \bot} \text{ (notE)} \qquad \frac{\Gamma \vdash P \lor \neg P}{\Gamma \vdash P \lor \neg P} \text{ (excluded_middle)}$$

Natural Deduction in Isabelle/HOL

Isabelle represents the sequent $P_1, P_2, \dots, P_n \vdash Q$ with the following notation:

$$P_1 \Longrightarrow (P_2 \Longrightarrow \ldots \Longrightarrow (P_n \Longrightarrow Q) \ldots)$$

which is also written as: $[P_1; P_2; ...; P_n] \Longrightarrow Q$

Note: To enable the bracket notation for sequents in Isabelle, select: Plugins \rightarrow Plugin Options in the Isabelle JEdit menu bar. Then select Isabelle \rightarrow General and enter *brackets* in the Print Mode box.

The symbol \Longrightarrow is *meta-implication*.

Meta-implication is used to represent the relationship between premises and conclusions of rules.

$$\begin{array}{c} [P] \\ \vdots \\ \hline Q \\ \hline P \to Q \quad \text{is written as} \quad (?P \Longrightarrow ?Q) \Longrightarrow (?P \to ?Q) \end{array}$$

Natural Deduction Rules in Isabelle

A selection of natural deduction rules in Isabelle notation:

$$\frac{P \quad Q}{P \land Q} \text{ (conjI)} \qquad [[?P,?Q]] \Longrightarrow ?P \land ?Q$$

$$\frac{P \land Q}{P} \text{ (conjunct1)} \qquad [[?P \land ?Q]] \Longrightarrow ?P$$

$$\frac{P}{P \lor Q} \text{ (disjI1)} \qquad [[?P]] \Longrightarrow ?P \lor ?Q$$

$$[P] \quad [Q]$$

$$\vdots \quad \vdots$$

$$R \quad R$$

$$Q \quad [?P \lor ?Q,?P \Longrightarrow ?R;?Q \Longrightarrow ?R]$$

Doing Proofs in Isabelle: Theory Set-up

```
Syntax: theory MyTh imports T_1 ... T_n begin (definitions, theorems, proofs, ...)* end
```

MyTh: name of theory. Must live in file MyTh. thy T_i : names of *imported* theories. Import is transitive.

Often: imports Main

Doing Proofs in Isabelle

A declaration like so enters proof mode:

```
theorem K: "A \rightarrow B \rightarrow A"
```

Isabelle responds:

```
proof (prove)

goal (1 subgoal):

1. A \rightarrow B \rightarrow A
```

We now apply proof methods (tactics) that affect the subgoals. Either:

- generate new subgoal(s), breaking the problem down; or
- ▶ solve the subgoal

When there are no more subgoals, then the proof is complete.

The assumption Method

Given a subgoal of the form:

$$\llbracket A;B\rrbracket \longrightarrow A$$

This subgoal is solvable because we want to prove A under the assumption that A is true.

We can solve this subgoal using the assumption method:

apply assumption

The rule Method

To apply an inference rule backward, we use rule.

Consider the theorem disjI1

$$?P \Longrightarrow ?P \lor ?Q$$

Using the command

on the goal

$$[A; B; C] \Longrightarrow (A \land B) \lor D$$

yields the subgoal

$$\llbracket A; B; C \rrbracket \Longrightarrow A \wedge B$$

Using rule can be viewed as a way of breaking down the problem into subproblems.

Matching and Unification

In applying rule (with the? in front of variables omitted)

$$P \Longrightarrow P \vee Q$$

to goal

$$[A; B; C] \Longrightarrow (A \land B) \lor D$$

The pattern $P \lor Q$ is **matched** with the target $(A \land B) \lor D$ to yield the instantiations $P \mapsto A \land B$, $Q \mapsto D$ which make the pattern and target the same. The following goal results

$$[\![A;B;C]\!] \Longrightarrow A \wedge B$$

In general, if the goal conclusion contains schematic variables, the rule and goal conclusions are **unified** i.e. both are instantiated so as to make them the same.

More on unification later!

Summary

- ▶ More natural deduction (H&R 1.2, 1.4)
 - ▶ The rules for \rightarrow , \leftrightarrow and \neg
 - Rules for classical reasoning
 - Soundness and completeness properties
 - Sequent-style presentation
- Starting with proofs in Isabelle
- ▶ Next time:
 - More on using Isabelle to do proofs
 - N-style vs. L-style proof systems