
Automated Reasoning Lecture 4, page 1FOL

Automated Reasoning

Natural Deduction in
First-Order Logic

Jacques Fleuriot

Automated Reasoning Lecture 4, page 2FOL

Problem
Consider the following problem:

Every person has a heart.
George Bush is a person.
Does George Bush have a heart?

 Is Propositional logic rich enough to formally
represent and reason about this problem?

The finer logical structure of this problem would
not be captured by the constructs we have so far
encountered.

We need a richer language!

Automated Reasoning Lecture 4, page 3FOL

A Richer Language
First order logic (FOL) extends propositional logic:

– Reasons about “individuals in a universe of discourse”
and their “properties”

– Have predicates and functions to denote properties

– A variable stands for an element of the universe

– Variables range over individuals but not over
functions and predicates

– Propositional connectives used to build up statements

– Quantifiers ∀ (for all) and ∃ (there exists) used

– FOL also known as Predicate logic

Automated Reasoning Lecture 4, page 4FOL

FOL
● First order language is characterized by

giving a finite collection of functions F and

predicates P as well as a set of variables.

– Often call (F, P) a signature

● 2 syntactic categories: terms and formulae
– terms stand for individuals while formulae

stand for truth values

Automated Reasoning Lecture 4, page 5FOL

Terms of FOL

Terms of a first-order language are defined
as:
– Any variable is a term

– If c ∈F is a nullary function (i.e. a constant),

then c is a term

– If t
1
,..., t

n
 are terms and function f ∈F has

arity n > 0, then f(t
1
,..., t

n
) is a term

– Nothing else is a term

Automated Reasoning Lecture 4, page 6FOL

Formulae of FOL
A well-formed formula in FOL is defined as:

– If P ∈ P is a predicate symbol of arity n 0, and

if t
1
, ..., t

n
 are terms over F, then P(t

1
, ..., t

n
) is a

formula.

– If is a formula, then so is (¬).

– If and are formulas, then so are (∧),
(∨), () and (↔).

– If is a formula and x is a variable, then (∃x.)
and (∀x.) are formulas.

– Nothing else is a formula.

Automated Reasoning Lecture 4, page 7FOL

Example: Problem Revisited
We can now formally represent our problem in FOL:

 Every person has a heart: ∀x. person(x) hasHeart(x)
 George Bush is a person: person(bush)

To answer the question
Does George Bush have a heart?

we need to prove:

((∀x. person(x) hasHeart(x)) ∧ person(bush)) hasHeart(bush)

How do we prove if this is a valid statement?
- more on this later

Automated Reasoning Lecture 4, page 8FOL

Variables
● In FOL, variables can be in one of two states:

– bound: ∀x. x=x or ∃x. x=x , etc ...
– free: x=x

● For example, in the proposition:

∀x. ∃y. x * y = z

x and y are bound variables and z is a free variable.

Automated Reasoning Lecture 4, page 9FOL

Substitution Rule
If P is a formula, s is a term, and x is a free variable,
then

 P [s/x]

is the formula obtained by substituting s for x
throughout P. Such a substitution rule can be defined
as:

Example: ∃x. P(x,y) [3/y] = ∃x. P(x,3)

 ∃x. P(x,y) [2/x] = ∃x. P(x,y)

s=t P [s /x]

P [t /x]
subst

Automated Reasoning Lecture 4, page 10FOL

Semantics of FOL Formulae
Informal view:

 An interpretation of a formula maps its
function symbols, including constants, to
actual functions, and its predicate symbols
to actual relations.

 The interpretation also specifies some

domain D (a non-empty set or universe) on

which the functions and relations are
defined.

Automated Reasoning Lecture 4, page 11FOL

Definition of Interpretation
An interpretation for a wff consists of a nonempty set D, called

the domain of the interpretation, together with an assignment of
meanings to the symbols of the wff.

1. Each predicate symbol is assigned to a relation over D.

A nullary predicate is assigned a truth value.

2. Each function symbol is assigned to a function over D.

Each nullary function (constant) is assigned to a value in

D.

3. Each free variable is assigned to a value in D.

All free occurrences of a free variable x are assigned to

the same value in D.

Automated Reasoning Lecture 4, page 12FOL

Example of Interpretation
Consider the formula

 P(a) ∧ ∃x. Q(a,x) (*)

A possible interpretation is:

● Domain is the set of natural numbers (e.g. 0, 1, 2, 3 ,...)

● Assign 2 to a, assign the property of being even to P, and
the relation of being greater than to Q, i.e Q(x,y) means x
is greater than y

● Under this interpretation: (*) affirms that 2 is even and
there exists a natural number that 2 is greater than. Is
(*) satisfied under this interpretation? -Yes

● Such a satisfying interpretation is known as a model

formula does not mean
anything on its own

Automated Reasoning Lecture 4, page 13FOL

Semantics of FOL Formulae
The semantics (meaning) of a wff in FOL with respect to an

interpretation with domain D is the truth value obtained by

applying the following rules:

1. If the wff has no quantifiers then its meaning is the
truth value of the proposition obtained by applying the
interpretation to the wff.

2. If the wff contains ∀x. W then ∀x. W is true if W [d/x] is

true for every d ∈ D. Otherwise, ∀x. W is false.

3. If the wff contains∃x. W then ∃x. W is true if W [d/x] is

true for some d ∈ D. Otherwise, ∃x. W is false.

Automated Reasoning Lecture 4, page 14FOL

More Introduction Rules
Our natural deduction rules for Propositional logic need to
be extended to deal with FOL.

Quantifiers ∀, ∃ need substitution and notion of arbitrary
variable:

P x0

∀ x.P x
allI

P a
∃x.P x

exI

provided x
0
 is fresh

x
0
is an arbitrary free variable i.e. we make no assumptions about it

Automated Reasoning Lecture 4, page 15FOL

Existential Elimination
 The proviso is part of the rule definition

 and cannot be omitted

∃u.P u

[P x]
⋮
Q

Q
exE

Provided x does not occur in P u or Q or
any other premise other than P x on
which derivation of Q from P x depends

Automated Reasoning Lecture 4, page 16FOL

Universal Elimination

An alternative universal elimination rule is allE:

∀u.P u
P x

spec

∀u.P u

[P x]
⋮
R

R
allE

“specialization” rule

Note: This rule is mostly useful
when doing a mechanical proof

Automated Reasoning Lecture 4, page 17FOL

Example proof

Prove that ∃y. P y is true, given that ∀x. P x
holds.

∀ x.P x
assum

P a
spec

∃y.P y
exI

Automated Reasoning Lecture 4, page 18FOL

Example proof (II)
Prove that ∀x. Q x is true, given that ∀x. P x
and (∀x. P x Q x) both hold.

∀ x.P x Q x
assum

∀ x.P x
assum

P a Q a
by1

P a
by2

Q a
by3

Q a
impE

Q a
allE

Q a
allE

∀ x.Q x
allI

red assumptions hold
allE introduces (1) [P a Q a]

allE introduces (2) [P a]
✶ (3) [Q a]

✶ impE introduces (3) [Q a] Exercise: Redo this proof using “spec” instead of allE

Automated Reasoning Lecture 4, page 19FOL

Problem (III)

Prove that hasHeart(bush) given that ∀x. person(x) hasHeart(x)
 and person(bush) hold.

∀ x.per x heart x
assum

per b heart b
by1

per b
assum

heart b
by 2

heart b
impE

heart b
allE

red assumptions hold

allE introduces assumption (1) [per(b) heart(b)]

impE introduces
(2)[heart(b)]

abbrevs: heart(x) for hasHeart(x) and per(x) for person(x)

Exercise: Redo this proof using “spec” instead of allE

Automated Reasoning Lecture 4, page 20FOL

FOL in Coq
In Coq, FOL is a typed logic with

– types such as nat (for natural numbers), bool (for
boolean values) and list (for lists)

– type constructors such as O and S for constructing

nat terms: e.g. O represents “zero”, S O represents
“one” and S (S O))represents “two”.

– function types written using , e.g.
nat nat nat is the type of a function that takes
two nat term arguments and returns a nat term.

– parameterized types that allow us to define types
parameterized by other types e.g.
nat list for lists of nat terms and bool list for lists
of bool terms.

Automated Reasoning Lecture 4, page 21FOL

● Consider the mathematical predicate mod. In Coq, we
could formalize this as:
Definition mod (a:nat) (b:nat) (c:nat) : Prop :=
 exists k, a = b * k + c.

We can use this definition to write propositions like:
forall (a b c d:nat), a = d > mod d b c = mod a b c.

● Coq performs type inference. The definition above could
have been written as:
Definition mod a b c := exists k, a = b * k + c.

The proposition could have been written as:
forall a b c d, a = d > mod d b c = mod a b c.

FOL in Coq (II)

Automated Reasoning Lecture 4, page 22FOL

Coq Demo

Can be found on course webpage ...

Automated Reasoning Lecture 4, page 23FOL

Summary
● Introduction to FOL

– Syntax and Semantics

– Substitution

– Intro and elim rules for quantifiers

● Coq
– Declaring predicates

– Brief look at types

● Next time: matters of representation

