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Problem
Consider the following problem:

Every person has a heart.
George Bush is a person.
Does George Bush have a heart?

    Is Propositional logic rich enough to formally 
represent and reason about this problem?

The finer logical structure of this problem would
not be captured by the constructs we have so far 
encountered.

We need a richer language!
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A Richer Language
First order logic (FOL) extends propositional logic:

– Reasons about “individuals in a universe of discourse” 
and their “properties”

– Have predicates and functions to denote properties

– A variable stands for an element of the universe

– Variables range over individuals but not over 
functions and predicates

– Propositional connectives used to build up statements

– Quantifiers ∀ (for all) and ∃ (there exists) used

– FOL also known as Predicate logic
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FOL
● First order language is characterized by 

giving a finite collection of functions F and 

predicates P as well as a set of variables.

– Often call (F, P )  a signature

● 2 syntactic categories: terms and formulae
– terms stand for individuals while formulae 

stand for truth values
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Terms of FOL

Terms of a first-order language are defined 
as:
– Any variable is a term

– If c ∈F  is a nullary function (i.e. a constant), 

then c is a term 

– If  t
1
,..., t

n
  are terms and function f ∈F  has 

arity n > 0,  then f(t
1
,..., t

n
) is a term  

– Nothing else is a term 
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Formulae of FOL
A well-formed formula in FOL is defined as:

– If P ∈ P  is a predicate symbol of arity n  0, and 

if t
1
, ..., t

n
 are terms over F, then P(t

1
, ..., t

n
) is a 

formula.

– If  is a formula, then so is (¬).

– If  and  are formulas, then so are (∧), 
(∨), () and (↔).

– If  is a formula and x is a variable, then (∃x. )  
and (∀x. ) are formulas.

– Nothing else is a formula.
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Example: Problem Revisited 
We can now formally represent our problem in FOL:

   Every person has a heart:  ∀x. person(x)  hasHeart(x)
   George Bush is a person:    person(bush)

To answer the question
Does George Bush have a heart?

we need to prove:

((∀x. person(x)  hasHeart(x)) ∧ person(bush))   hasHeart(bush)

How do we prove if this is a valid statement?
- more on this later 



Automated Reasoning Lecture 4, page 8FOL 

Variables 
● In FOL, variables can be in one of two states:

– bound: ∀x. x=x or ∃x. x=x , etc ...
– free: x=x

● For example, in the proposition:

∀x. ∃y. x * y = z

x and y are bound variables and z is a free variable.
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Substitution Rule
If P is a formula, s is a term, and x is a free variable, 
then

    P [s/x]

is the formula obtained by substituting s for x 
throughout P. Such a substitution rule can be defined 
as:

Example: ∃x. P(x,y) [3/y] = ∃x. P(x,3)

                ∃x. P(x,y) [2/x] = ∃x. P(x,y)

s=t P [s /x ]

P [t /x ]
subst
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Semantics of FOL Formulae
Informal view:

     An interpretation of a formula maps its 
function symbols, including constants, to 
actual functions, and its predicate symbols 
to actual relations.

    The interpretation also specifies some 

domain D (a non-empty set or universe) on 

which the functions and relations are 
defined.
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Definition of Interpretation
An interpretation for a wff consists of a nonempty set D, called 

the domain of the interpretation, together with an assignment of 
meanings to the symbols of the wff.

1. Each predicate symbol is assigned to a relation over D. 

A nullary predicate is assigned a truth value.

2. Each function symbol is assigned to a function over D.

Each nullary function (constant) is assigned to a value in 

D. 

3. Each free variable is assigned to a value in D. 

All free occurrences of a free variable x are assigned to 

the same value in D.



Automated Reasoning Lecture 4, page 12FOL 

Example of Interpretation
Consider the formula    

 P(a) ∧ ∃x. Q(a,x)  (*)

A possible interpretation is:

● Domain is the set of natural numbers (e.g. 0, 1, 2, 3 ,...)

● Assign 2 to a, assign the property of being even to P, and 
the relation of being greater than to Q, i.e Q(x,y) means x 
is greater than y  

● Under this interpretation: (*) affirms that 2 is even and 
there exists a natural number that 2 is greater than. Is 
(*) satisfied under this interpretation?  -Yes

● Such a satisfying interpretation is known as a model

formula does not mean 
anything on its own
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Semantics of FOL Formulae
The semantics (meaning) of a wff in FOL with respect to an 

interpretation with domain D is the truth value obtained by 

applying the following rules:

1. If the wff has no quantifiers then its meaning is the 
truth value of the proposition obtained by applying the 
interpretation to the wff.

2. If the wff contains ∀x. W then  ∀x. W is true if W [d/x] is 

true for every d ∈ D. Otherwise, ∀x. W is false.

3. If the wff contains∃x. W then ∃x. W is true if W [d/x] is 

true for some d ∈ D. Otherwise, ∃x. W is false.
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More Introduction Rules
Our natural deduction rules for Propositional logic need to
be extended to deal with FOL.

Quantifiers ∀, ∃ need substitution and notion of arbitrary 
variable:

P x0

∀ x.P x
allI

P a
∃x.P x

exI

provided x
0
 is fresh

x
0 
is an arbitrary free variable i.e. we make no assumptions about it
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Existential Elimination
                             The proviso is part of the rule definition

                                          and cannot be omitted

∃u.P u

[P x ]
⋮
Q

Q
exE

Provided x does not occur in P u or Q or 
any other premise other than P x on 
which derivation of Q from P x depends
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Universal Elimination

An alternative universal elimination rule is allE:

∀u.P u
P x

spec

∀u.P u

[P x ]
⋮
R

R
allE

“specialization” rule

Note: This rule is mostly useful 
when doing a mechanical proof
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Example proof

Prove that ∃y. P y is true, given that ∀x. P x 
holds. 

∀ x.P x
assum

P a
spec

∃y.P y
exI
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Example proof (II)
Prove that ∀x. Q x is true, given that ∀x. P x 
and (∀x. P x  Q x) both hold. 

∀ x.P x  Q x
assum

∀ x.P x
assum

P a  Q a
by1

P a
by2

Q a
by3

Q a
impE

Q a
allE

Q a
allE

∀ x.Q x
allI

red assumptions hold
allE introduces (1) [P a   Q a]

allE introduces (2) [P a]
✶ (3) [Q a]

✶ impE introduces (3) [Q a] Exercise: Redo this proof using “spec” instead of allE
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Problem (III)
 
Prove that hasHeart(bush) given that ∀x. person(x)  hasHeart(x)
 and person(bush) hold.  

∀ x.per x heart x 
assum

per b heart b
by1

per b
assum

heart b
by 2

heart b
impE

heart b
allE

red assumptions hold

allE introduces assumption  (1) [per(b)  heart(b)]

impE introduces 
(2)[heart(b)] 

abbrevs:   heart(x) for hasHeart(x)  and per(x) for person(x)

Exercise: Redo this proof using “spec” instead of allE
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FOL in Coq
In Coq, FOL is a typed logic with

– types such as nat (for natural numbers), bool (for 
boolean values) and list (for lists)

– type constructors such as O and S for constructing 

nat terms: e.g. O represents “zero”, S O represents 
“one” and S (S O))represents “two”.

– function types written using , e.g.
nat  nat  nat is the type of a function that takes 
two nat term arguments and returns a nat term.

– parameterized types that allow us to define types 
parameterized by other types e.g.
nat list for lists of nat terms and bool list for lists 
of bool terms.
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● Consider the mathematical predicate mod. In Coq, we 
could formalize this as:
Definition mod (a:nat) (b:nat) (c:nat) : Prop :=
  exists k, a = b * k + c.

We can use this definition to write propositions like:
forall (a b c d:nat), a = d > mod d b c = mod a b c.

● Coq performs type inference. The definition above could 
have been written as:
Definition mod a b c := exists k, a = b * k + c.

The proposition could have been written as:
forall a b c d, a = d > mod d b c = mod a b c.

FOL in Coq (II)
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Coq Demo

Can be found on course webpage ...
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Summary
● Introduction to FOL

– Syntax and Semantics

– Substitution

– Intro and elim rules for quantifiers

● Coq
– Declaring predicates

– Brief look at types

● Next time: matters of representation


