
Petros Papapanagiotou
pe.p@ed.ac.uk
7 October 2013

Software verification using Hoare
logic in Isabelle

Automated Reasoning – Coursework Assignment 1

Breakdown

 Part 1 : Natural Deduction (40 marks)
 14 lemmas to prove

 Part 2 : Hoare Logic (60 marks)
 Part 2a : Verify 6 algorithms (15 marks)
 Part 2b : Verify the MinSum algorithm (45 marks)

2 / 22

Isabelle / HOL
 A modern proof assistant.
 Written in PolyML.
 Supports multiple interfaces:
 ProofGeneral – Developed in UoE, supported on DICE.
 jEdit

 Multiple tools:
 Extensive libraries of theories and lemmas.
 Automated proof procedures.
 Various helpful tools (eg. counterexample checker)

3 / 22

Isabelle / HOL - Resources

 Getting started guide (use this to run Isabelle under DICE):
http://www.inf.ed.ac.uk/teaching/courses/ar/isabelle/isabelle-startup.pdf

 Tutorial / Documentation:
http://www.cl.cam.ac.uk/research/hvg/Isabelle/documentation.html

 Cheat Sheet:
 http://www.inf.ed.ac.uk/teaching/courses/ar/FormalCheatSheet.pdf

4 / 22

http://www.inf.ed.ac.uk/teaching/courses/ar/isabelle/isabelle-startup.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/documentation.html
http://www.inf.ed.ac.uk/teaching/courses/ar/FormalCheatSheet.pdf

Isabelle / HOL - Syntax
 Comments:

text {* COMMENTS *}
 Symbols:

 To view a theorem:
thm FOO

\<and> /\ ∧
\<or> \/ ∨

\<forall> ALL ∀
\<exists> EX ∃

\<longrightarrow> --> →

\<Longrightarrow> ==> ⟹

5 / 22

Isabelle HOL – Tactics + rules
 Basic tactics:

 Basic natural deduction rules:

rule rule_tac introduction (backward)

erule erule_tac elimination (forward + backward)

drule drule_tac destruction (forward)

frule frule_tac forward

conjI conjE conjunct1 conjunct2

disjI1 disjI2 disjE

impI impE mp

iffI iffD1 iffD1 iffE

notI notE

allI allE exI exE

excluded-middle ccontr
6 / 22

Isabelle / HOL – Tactics usage
 Simple application:

apply (rule exI)

 Instantiation:
apply (rule_tac x=A in exI)

 Multiple instantiations:

apply (drule_tac P=P and Q=Q in disjI1)

7 / 22

Other basic commands and tactics

apply (assumption) Prove by matching the goal to an assumption.

prefer Prioritize a subgoal.

defer Postpone a subgoal.

done Finish a proof with no subgoals.

oops / sorry Postpone a proof. (that doesn’t mean you proved it!)

8 / 22

Assignment Part 1
 Practice in natural deduction proofs in Isabelle.

 Using only basic rules and tactics, prove 14 lemmas.

 Including one of DeMorgan’s laws and Russel’s “barber” paradox.

 Lemmas marked individually, total 40%.

9 / 22

Isabelle / HOL – Advanced tactics
 You are not allowed to use these in Part 1!

case_tac P Case split over possible values of P (not necessarily
boolean).

clarify Clarify the subgoal using simple rules.

simp
simp add: FOO BAR
simp only: FOO BAR
simp del: FOO BAR

Simplify goal + assumptions using core rules.
- Add theorems FOO and BAR.

- Use only theorems FOO and BAR (not core rules).
- Exclude FOO and BAR from the core rules.

auto
auto simp add: FOO BAR

Try to prove all subgoals automatically.
- Also use the simplifier adding rules FOO and BAR.

blast / force Other automated procedures.

oops / sorry Postpone a proof. (that doesn’t mean you proved it!)

10 / 22

Isabelle / HOL – Hoare Logic
 We can use Isabelle’s Hoare Logic library to reason about a

simple WHILE programming language:

VARS x y z Local variables.

p ; q Sequence.

SKIP Do nothing.

X := 0 Assignment.

IF cond
THEN p
ELSE q
FI

Conditional.

WHILE cond
INV { invariant }

DO p
OD

While loop.

Invariant must be explicit!

11 / 22

Isabelle / HOL – Formal Specification
 Using this programming language, we can express Hoare triples

in Isabelle.
 Example (from Hoare Logic lecture):

lemma Fact: "VARS (Y::nat) Z
 {True}
 Y := 1;
 Z := 0;
 WHILE Z ≠ X
 INV { Y = fact Z }
 DO
 Z := Z + 1;
 Y := Y * Z
 OD
 { Y = fact X }"

12 / 22

Isabelle / HOL – VCs
 Isabelle can automatically extract VCs with the Verification

Condition Generation tactic:

apply vcg
 Result :

* Remember these from the Hoare Logic lecture?

proof (prove): step 1

goal (3 subgoals):

 1. ∧ Y Z. True ⟹ 1 = fact 0

 2. ∧ Y Z. Y = fact Z ∧ Z ≠ X ⟹ Y * (Z + 1) = fact (Z + 1)

 3. ∧ Y Z. Y = fact Z ∧ ¬ Z ≠ X ⟹ Y = fact X

13 / 22

Isabelle HOL - VCs

 We can use Isabelle tactics, rules, and lemmas to prove VCs.
 In this example, simp “knows enough” about fact to

solve all subgoals, but this will not always be the case.
 Alternative: vcg_simp (vcg + simp)
 Correctness of the Fact algorithm is now verified based on

the definition and properties of fact in Isabelle!

proof (prove): step 1

goal (3 subgoals):

 1. ∧ Y Z. True ⟹ 1 = fact 0

 2. ∧ Y Z. Y = fact Z ∧ Z ≠ X ⟹ Y * (Z + 1) = fact (Z + 1)

 3. ∧ Y Z. Y = fact Z ∧ ¬ Z ≠ X ⟹ Y = fact X

14 / 22

Assignment Part 2a
 Verify 6 simple algorithms:

 Use any rule/lemma from the available theories (you may not
import more) and any of the tactics described here or in the
Cheat Sheet (including simp and auto).

 Introduce the appropriate loop invariant and postcondition
where necessary:
 Replace the Inv variable (not the INV keyword) with your

invariant.
 Replace the Postcondition variable with your postcondition.

 Algorithms marked individually, total 15%.
15

Min Multi1 DownFact

Copy Multi2 Div

/ 22

Assignment Part 2b
 Verify the minimum section sum algorithm MinSum.

Si,j = A[i] + A[i+1] + … + A[j]
eg: A = [1,2,3,4] S1,2 = 2 + 3 = 5

 Two specifications:
 S1: The sum s is less than or equal the sum of any section of the array.

 S2: There exists a section of the array that has sum s.

16 / 22

Assignment Part 2b
 Verify the minimum section sum algorithm MinSum.

fun sectsum :: "int list ⇒ nat ⇒ nat ⇒ int" where
"sectsum l i j = listsum (take (j-i+1) (drop i l))“

eg: sectsum [1,2,3,4] 1 2 =

listsum (take (2-1+1) (drop 1 [1,2,3,4])) =
listsum (take 2 [2,3,4]) =

listsum [2,3] =
2 + 3 = 5

 Two specifications:
 S1: ∀i j. 0≤i ∧ i≤j ∧ j<length A →

s ≤ sectsum A i j
 S2: ∃i j. 0≤i ∧ i≤j ∧ j<length A ∧

s = sectsum A i j
17 / 22

Assignment Part 2b
 S1: ∀i j. 0≤i ∧ i≤j ∧ j<length A →

s ≤ sectsum A i j
 Proof:

Huth & Ryan, Section 4.3.3 (pp. 287-292)
 Introduces a loop invariant with 2 parts. These are already defined as

functions Inv1 and Inv2. Use simp with Inv1.simps and
Inv2.simps.

 Requires proof of Lemma 4.20 which has 2 parts:
lemma4_20a and lemma4_20b

 Prove both parts of Lemma 4.20 and use them to verify S1 by

proving lemma MinSum. (25%)

18 / 22

Assignment Part 2b
 S2: ∃i j. 0≤i ∧ i≤j ∧ j<length A ∧

s = sectsum A i j

 Introduce the appropriate invariant.
 Develop your own proof from scratch.

 Verify S2 by proving lemma MinSum2 (20%).

19 / 22

 Lecture 6 – H&R Secs 4.1-4.3

 Isabelle links
 Drop-in lab: AT 5.05 (West Lab), Thursdays 2pm – 3pm

 Discussion Forum & Mailing list
 Me: pe.p@ed.ac.uk

 20 / 22

https://www.forums.ed.ac.uk/viewforum.php?f=602
mailto:ar-students@inf.ed.ac.uk?subject=Question about Automated Reasoning Assignment 1
mailto:pe.p@ed.ac.uk?subject=Question about Automated Reasoning Assignment 1

 Don’t change imports and definitions!

 Plan your proofs on paper before you try them on Isabelle!
 Prove as many extra lemmas as you need!
 Write comments (especially for part 2b)!

 If you cannot prove something, take it as far as you can,
write comments, and use “sorry”!

 Your matriculation number in the file!
 Start early!
 No plagiarism!

21 / 22

22

 Don’t change imports and definitions!

 Plan your proofs on paper before you try them on Isabelle!
 Prove as many extra lemmas as you want!
 Write comments (especially part 2b)!

 If you cannot prove something, take it as far as you can,
write comments, and use “sorry”!

Deadline:
Monday, 28 Oct 2013, 14:00

	Software verification using Hoare logic in Isabelle
	Breakdown
	Isabelle / HOL
	Isabelle / HOL - Resources
	Isabelle / HOL - Syntax
	Isabelle HOL – Tactics + rules
	Isabelle / HOL – Tactics usage
	Other basic commands and tactics
	Assignment Part 1
	Isabelle / HOL – Advanced tactics
	Isabelle / HOL – Hoare Logic
	Isabelle / HOL – Formal Specification
	Isabelle / HOL – VCs
	Isabelle HOL - VCs
	Assignment Part 2a
	Assignment Part 2b
	Assignment Part 2b
	Assignment Part 2b
	Assignment Part 2b
	Slide Number 20
	Slide Number 21
	Slide Number 22

